913 research outputs found
The evolution of obscured accretion
Our current understanding of the evolution of obscured accretion onto
supermassive black holes is reviewed. We consider the literature results on the
relation between the fraction of moderately obscured, Compton-thin AGN and
redshift, and discuss the biases which possibly affect the various
measurements. Then, we discuss a number of methods - from ultradeep X-ray
observations to the detection of high-ionization optical emission lines - to
select the population of the most heavily obscured, Compton-thick AGN, whose
cosmological evolution is basically unknown. The space density of heavily
obscured AGN measured through different techniques is discussed and compared
with the predictions by current synthesis models of the X-ray background.
Preliminary results from the first half of the 3 Ms XMM observation of the
Chandra Deep Field South (CDFS) are also presented. The prospects for
population studies of heavily obscured AGN with future planned or proposed
X-ray missions are finally discussed.Comment: 6 pages, 2 figures. Invited talk at the conference "X-ray Astronomy
2009: Present status, multiwavelength approach and future perspectives",
September 2009, Bologna. To appear in AIP Conf. Proc. (editors: A. Comastri,
M. Cappi, L. Angelini)
A deep X-ray observation of M82 with XMM-Newton
We report on the analysis of a deep (100 ks) observation of the starburst
galaxy M82 with the EPIC and RGS instruments on board the X-ray telescope
XMM-Newton. The broad-band (0.5-10 keV) emission is due to at least three
spectral components: i) continuum emission from point sources; ii) thermal
plasma emission from hot gas; iii) charge exchange emission from neutral metals
(Mg and Si). The plasma emission has a double-peaked differential emission
measure, with the peaks at ~0.5 keV and ~7 keV. Spatially resolved spectroscopy
has shown that the chemical absolute abundances are not uniformly distributed
in the outflow, but are larger in the outskirts and smaller close to the galaxy
centre. The abundance ratios also show spatial variations. The X-ray derived
Oxygen abundance is lower than that measured in the atmospheres of red
supergiant stars, leading to the hypothesis that a significant fraction of
Oxygen ions have already cooled off and no longer emit at energies > ~0.5 keV.Comment: Accepted for publication in MNRAS. 20 pages, 15 figures, LaTeX2
Compton Thick AGN in the 70 Month Swift-BAT All-Sky Hard X-ray Survey: a Bayesian approach
The 70-month Swift/BAT catalogue provides a sensitive view of the
extragalactic X-ray sky at hard energies (>10 keV) containing about 800 Active
Galactic Nuclei. We explore its content in heavily obscured, Compton-thick AGN
by combining the BAT (14-195 keV) with the lower energy XRT (0.3-10 keV) data.
We apply a Bayesian methodology using Markov chains to estimate the exact
probability distribution of the column density for each source. We find 53
possible Compton-thick sources (with probability 3 to 100%) translating to a
~7% fraction of the AGN in our sample. We derive the first parametric
luminosity function of Compton-thick AGN. The unabsorbed luminosity function
can be represented by a double power-law with a break at in the 20-40 keV band.Comment: 13 pages, 9 figure
The 2-10 keV luminosity as a Star Formation Rate indicator
Radio and far infrared luminosities of star-forming galaxies follow a tight linear relation. Making use of ASCA and BeppoSAX observations of a well-defined sample of nearby star-forming galaxies, we argue that tight linear relations hold between the X-ray, radio and far infrared luminosities. The effect of intrinsic absorption is investigated taking NGC3256 as a test case. It is suggested that the hard X-ray emission is directly related to the Star Formation Rate. Star formation processes may also account for most of the 2-10 keV emission from LLAGNs of lower X-ray luminosities (for the same FIR and radio luminosity). Deep Chandra observations of a sample of radio-selected star-forming galaxies in the Hubble Deep Field North show that the same relation holds also at high (0.2< z< 1.3) redshift. The X-ray/radio relations also allow a derivation of X-ray number counts up to very faint fluxes from the radio Log N-Log S, which is consistent with current limits and models. Thus the contribution of star-forming galaxies to the X-ray background can be estimated
Probing BH mass and accretion through X-ray variability in the CDFS
Recent work on nearby AGNs has shown that X-ray variability is correlated
with the mass and accretion rate onto the central SMBH. Here we present the
application of the variability-luminosity relation to high redshift AGNs in the
CDFS, making use of XMM-Newton observations. We use Monte Carlo simulations in
order to properly account for bias and uncertainties introduced by the sparse
sampling and the very low statistics. Our preliminary results indicate that BH
masses span over the range from 10^5 to 10^9 solar mass while accretion rates
range from 10^-3 up to values greater than 1, in unit of Eddington accretion
rate.Comment: 2 pages, 2 figures,in press in the X-ray 2009 Conference Proceedings
(Bologna, 7-11 September 2009
The high-redshift Universe with the International X-ray Observatory
We discuss some of the main open issues related to the light-up and evolution
of the first accreting sources powering high redshift luminous quasars. We
discuss the perspectives of future deep X-ray surveys with the International
X-ray Observatory and possible synergies with the Wide Field X-ray Telescope.Comment: 6 pages, 6 figures. Proceedings of "The Wide Field X-ray Telescope
Workshop", held in Bologna, Italy, Nov. 25-26 2009. To appear in Memorie
della Societ\`a Astronomica Italiana 2010 (arXiv:1010.5889
The XMM deep survey in the CDF-S. X. X-ray variability of bright sources
We aim to study the variability properties of bright hard X-ray selected
Active Galactic Nuclei (AGN) with redshift between 0.3 and 1.6 detected in the
Chandra Deep Field South (XMM-CDFS) by a long XMM observation. Taking advantage
of the good count statistics in the XMM CDFS we search for flux and spectral
variability using the hardness ratio techniques. We also investigated spectral
variability of different spectral components. The spectra were merged in six
epochs (defined as adjacent observations) and in high and low flux states to
understand whether the flux transitions are accompanied by spectral changes.
The flux variability is significant in all the sources investigated. The
hardness ratios in general are not as variable as the fluxes. Only one source
displays a variable HR, anti-correlated with the flux (source 337). The
spectral analysis in the available epochs confirms the steeper when brighter
trend consistent with Comptonisation models only in this source. Finding this
trend in one out of seven unabsorbed sources is consistent, within the
statistical limits, with the 15 % of unabsorbed AGN in previous deep surveys.
No significant variability in the column densities, nor in the Compton
reflection component, has been detected across the epochs considered. The high
and low states display in general different normalisations but consistent
spectral properties. X-ray flux fluctuations are ubiquitous in AGN. In general,
the significant flux variations are not associated with a spectral variability:
photon index and column densities are not significantly variable in nine out of
the ten AGN over long timescales (from 3 to 6.5 years). The photon index
variability is found only in one source (which is steeper when brighter) out of
seven unabsorbed AGN. These results are consistent with previous deep samples.Comment: 14 pages, 11 figures. Accepted in A&
- …