3,063 research outputs found

    Modeling Covariate Effects in Group Independent Component Analysis with Applications to Functional Magnetic Resonance Imaging

    Full text link
    Independent component analysis (ICA) is a powerful computational tool for separating independent source signals from their linear mixtures. ICA has been widely applied in neuroimaging studies to identify and characterize underlying brain functional networks. An important goal in such studies is to assess the effects of subjects' clinical and demographic covariates on the spatial distributions of the functional networks. Currently, covariate effects are not incorporated in existing group ICA decomposition methods. Hence, they can only be evaluated through ad-hoc approaches which may not be accurate in many cases. In this paper, we propose a hierarchical covariate ICA model that provides a formal statistical framework for estimating and testing covariate effects in ICA decomposition. A maximum likelihood method is proposed for estimating the covariate ICA model. We develop two expectation-maximization (EM) algorithms to obtain maximum likelihood estimates. The first is an exact EM algorithm, which has analytically tractable E-step and M-step. Additionally, we propose a subspace-based approximate EM, which can significantly reduce computational time while still retain high model-fitting accuracy. Furthermore, to test covariate effects on the functional networks, we develop a voxel-wise approximate inference procedure which eliminates the needs of computationally expensive covariance estimation. The performance of the proposed methods is evaluated via simulation studies. The application is illustrated through an fMRI study of Zen meditation.Comment: 36 pages, 5 figure

    Spin liquids on a honeycomb lattice: Projective Symmetry Group study of Schwinger fermion mean-field theory

    Full text link
    Spin liquids are novel states of matter with fractionalized excitations. A recent numerical study of Hubbard model on a honeycomb lattice\cite{Meng2010} indicates that a gapped spin liquid phase exists close to the Mott transition. Using Projective Symmetry Group, we classify all the possible spin liquid states by Schwinger fermion mean-field approach. We find there is only one fully gapped spin liquid candidate state: "Sublattice Pairing State" that can be realized up to the 3rd neighbor mean-field amplitudes, and is in the neighborhood of the Mott transition. We propose this state as the spin liquid phase discovered in the numerical work. To understand whether SPS can be realized in the Hubbard model, we study the mean-field phase diagram in the J1βˆ’J2J_1-J_2 spin-1/2 model and find an s-wave pairing state. We argue that s-wave pairing state is not a stable phase and the true ground state may be SPS. A scenario of a continuous phase transition from SPS to the semimetal phase is proposed. This work also provides guideline for future variational studies of Gutzwiller projected wavefunctions.Comment: 13 pages, 4 figures, Revtex

    Generalized modular transformations in 3+1D topologically ordered phases and triple linking invariant of loop braiding

    Full text link
    In topologically ordered quantum states of matter in 2+1D (space-time dimensions), the braiding statistics of anyonic quasiparticle excitations is a fundamental characterizing property which is directly related to global transformations of the ground-state wavefunctions on a torus (the modular transformations). On the other hand, there are theoretical descriptions of various topologically ordered states in 3+1D, which exhibit both point-like and loop-like excitations, but systematic understanding of the fundamental physical distinctions between phases, and how these distinctions are connected to quantum statistics of excitations, is still lacking. One main result of this work is that the three-dimensional generalization of modular transformations, when applied to topologically ordered ground states, is directly related to a certain braiding process of loop-like excitations. This specific braiding surprisingly involves three loops simultaneously, and can distinguish different topologically ordered states. Our second main result is the identification of the three-loop braiding as a process in which the worldsheets of the three loops have a non-trivial triple linking number, which is a topological invariant characterizing closed two-dimensional surfaces in four dimensions. In this work we consider realizations of topological order in 3+1D using cohomological gauge theory in which the loops have Abelian statistics, and explicitly demonstrate our results on examples with Z2Γ—Z2Z_2\times Z_2 topological order
    • …