14,319 research outputs found

    The Resonance Overlap and Hill Stability Criteria Revisited

    Get PDF
    We review the orbital stability of the planar circular restricted three-body problem, in the case of massless particles initially located between both massive bodies. We present new estimates of the resonance overlap criterion and the Hill stability limit, and compare their predictions with detailed dynamical maps constructed with N-body simulations. We show that the boundary between (Hill) stable and unstable orbits is not smooth but characterized by a rich structure generated by the superposition of different mean-motion resonances which does not allow for a simple global expression for stability. We propose that, for a given perturbing mass m1m_1 and initial eccentricity ee, there are actually two critical values of the semimajor axis. All values aaunstablea a_{\rm unstable} are unstable in the Hill sense. The first limit is given by the Hill-stability criterion and is a function of the eccentricity. The second limit is virtually insensitive to the initial eccentricity, and closely resembles a new resonance overlap condition (for circular orbits) developed in terms of the intersection between first and second-order mean-motion resonances.Comment: 33 pages, 14 figures, accepte

    As diversity increases, people paradoxically perceive social groups as more similar

    Get PDF
    With globalization and immigration, societal contexts differ in sheer variety of resident social groups. Social diversity challenges individuals to think in new ways about new kinds of people and where their groups all stand, relative to each other. However, psychological science does not yet specify how human minds represent social diversity, in homogeneous or heterogenous contexts. Mental maps of the array of society’s groups should differ when individuals inhabit more and less diverse ecologies. Nonetheless, predictions disagree on how they should differ. Confirmation bias suggests more diversity means more stereotype dispersion: With increased exposure, perceivers’ mental maps might differentiate more among groups, so their stereotypes would spread out (disperse). In contrast, individuation suggests more diversity means less stereotype dispersion, as perceivers experience within-group variety and between-group overlap. Worldwide, nationwide, individual, and longitudinal datasets (n = 12,011) revealed a diversity paradox: More diversity consistently meant less stereotype dispersion. Both contextual and perceived ethnic diversity correlate with decreased stereotype dispersion. Countries and US states with higher levels of ethnic diversity (e.g., South Africa and Hawaii, versus South Korea and Vermont), online individuals who perceive more ethnic diversity, and students who moved to more ethnically diverse colleges mentally represent ethnic groups as more similar to each other, on warmth and competence stereotypes. Homogeneity shows more-differentiated stereotypes; ironically, those with the least exposure have the most-distinct stereotypes. Diversity means less-differentiated stereotypes, as in the melting pot metaphor. Diversity and reduced dispersion also correlate positively with subjective wellbeing.info:eu-repo/semantics/publishedVersio

    Gauge transformations for higher-order lagrangians

    Get PDF
    Noether's symmetry transformations for higher-order lagrangians are studied. A characterization of these transformations is presented, which is useful to find gauge transformations for higher-order singular lagrangians. The case of second-order lagrangians is studied in detail. Some examples that illustrate our results are given; in particular, for the lagrangian of a relativistic particle with curvature, lagrangian gauge transformations are obtained, though there are no hamiltonian gauge generators for them.Comment: 22 pages, LaTe

    Atomistic simulations of self-trapped exciton formation in silicon nanostructures: The transition from quantum dots to nanowires

    Full text link
    Using an approximate time-dependent density functional theory method, we calculate the absorption and luminescence spectra for hydrogen passivated silicon nanoscale structures with large aspect ratio. The effect of electron confinement in axial and radial directions is systematically investigated. Excited state relaxation leads to significant Stokes shifts for short nanorods with lengths less than 2 nm, but has little effect on the luminescence intensity. The formation of self-trapped excitons is likewise observed for short nanostructures only; longer wires exhibit fully delocalized excitons with neglible geometrical distortion at the excited state minimum.Comment: 10 pages, 4 figure

    Fast-ion redistribution and loss due to edge perturbations in the ASDEX Upgrade, DIII-D and KSTAR tokamaks

    Get PDF
    The impact of edge localized modes (ELMs) and externally applied resonant and non-resonant magnetic perturbations (MPs) on fast-ion confinement/transport have been investigated in the ASDEX Upgrade (AUG), DIII-D and KSTAR tokamaks. Two phases with respect to the ELM cycle can be clearly distinguished in ELM-induced fast-ion losses. Inter-ELM losses are characterized by a coherent modulation of the plasma density around the separatrix while intra-ELM losses appear as well-defined bursts. In high collisionality plasmas with mitigated ELMs, externally applied MPs have little effect on kinetic profiles, including fast-ions, while a strong impact on kinetic profiles is observed in low-collisionality, low q95 plasmas with resonant and non-resonant MPs. In low-collisionality H-mode plasmas, the large fast-ion filaments observed during ELMs are replaced by a loss of fast-ions with a broad-band frequency and an amplitude of up to an order of magnitude higher than the neutral beam injection prompt loss signal without MPs. A clear synergy in the overall fast-ion transport is observed between MPs and neoclassical tearing modes. Measured fast-ion losses are typically on banana orbits that explore the entire pedestal/scrape-off layer. The fast-ion response to externally applied MPs presented here may be of general interest for the community to better understand the MP field penetration and overall plasma response.Marie Curie FP7 Integration PCIG11-GA2012-321455Ministerio de EconomĂ­a y Competitividad RYC-2011-09152, ENE2012-31087US Department of Energy DE-FC02-04ER54698, SC-G903402, DEFG02- 04ER54761, DE-AC02-09CH11466, DE-FG02- 08ER54984NRF Korea 2009-008201

    Medium-modified evolution of multiparticle production in jets in heavy-ion collisions

    Full text link
    The energy evolution of medium-modified average multiplicities and multiplicity fluctuations in quark and gluon jets produced in heavy-ion collisions is investigated from a toy QCD-inspired model. In this model, we use modified splitting functions accounting for medium-enhanced radiation of gluons by a fast parton which propagates through the quark gluon plasma. The leading contribution of the standard production of soft hadrons is found to be enhanced by the factor Ns\sqrt{N_s} while next-to-leading order (NLO) corrections are suppressed by 1/Ns1/\sqrt{N_s}, where the nuclear parameter Ns>1N_s>1 accounts for the induced-soft gluons in the hot medium. The role of next-to-next-to-leading order corrections (NNLO) is studied and the large amount of medium-induced soft gluons is found to drastically affect the convergence of the perturbative series. Our results for such global observables are cross-checked and compared with their limits in the vacuum and a new method for solving the second multiplicity correlator evolution equations is proposed.Comment: 21 pages and 8 figures, typo corrections, references adde

    The Single-Particle Spectral Function of 16O^{16}{\rm O}

    Full text link
    The influence of short-range correlations on the pp-wave single-particle spectral function in 16O^{16}{\rm O} is studied as a function of energy. This influence, which is represented by the admixture of high-momentum components, is found to be small in the pp-shell quasihole wave functions. It is therefore unlikely that studies of quasihole momentum distributions using the (e,e′p)(e,e'p) reaction will reveal a significant contribution of high momentum components. Instead, high-momentum components become increasingly more dominant at higher excitation energy. The above observations are consistent with the energy distribution of high-momentum components in nuclear matter.Comment: 5 pages, RevTeX, 3 figure
    • …
    corecore