5 research outputs found

    Trichloroisocyanuric acid mediated one-pot synthesis of 3,5-diarylisoxazoles from <i>α,β</i>-unsaturated ketones

    No full text
    A facile one-pot synthesis of 3,5-diarylisoxazoles from α,β-unsaturated ketones and hydroxylamine hydrochloride is reported. The reaction is efficiently promoted by trichloroisocyanuric acid (TCCA) to afford the desired products, mostly in high yields and in relatively short time. The mild nature of the synthesis and short reaction time are notable advantages of the developed protocol. This protocol is effective towards various substrates having different functionalities.</p

    A convenient one-pot synthesis of N-fused 1,2,4-triazoles via oxidative cyclization using chromium (VI) oxide

    No full text
    A facile one-pot synthesis of N-fused 1,2,4-triazoles from heterocyclic hydrazines and aldehydes is reported. The reaction is efficiently promoted by chromium (VI) oxide to afford the desired products mostly in high yields and in relatively short time. The high yield of the products and short reaction time are notable advantages of the developed protocol. This protocol is effective toward various substrates having different functionalities.</p

    SimELIT: A Novel GUI-Based Comprehensive Ion Trajectory Simulation Software for Mass Spectrometry

    No full text
    Ion trajectory simulation in mass spectrometry systems from injection to detection is technically challenging but very important for better understanding the ion dynamics in instrument development. Here, we present SimELIT (Simulator of Eulerian and Lagrangian Ion Trajectories), a novel ion trajectory simulation platform. SimELIT is built upon a suite of multiphysics solvers compiled into OpenFOAM (an open-source numerical solver library particularly used for computational mechanics), with a simple web-based graphical user interface (GUI) allowing users to define the details of OpenFOAM cases and run simulations. SimELIT is a modular program and can provide extensions of physics (e.g., gas flows, electrodynamic fields) and thus enable ion trajectory simulations from the ion source to detector. The current version (SimELIT) provides two numerical solvers for ion trajectory simulations(1) a Lagrangian particle tracker in vacuum and (2) a Eulerian ion density solver in background gas in the presence of electric fields. Here, we describe the architecture of SimELIT, including its use of Docker and the React Framework, and demonstrate the computation of ion trajectories of multiple m/z values in a static/linear voltage drop in vacuum (across a 1 m long flight tube). Further, the drift motion of ions under 1 Torr pressure conditions in a static background (N2) gas through a 20 V/cm static electric field is shown. The results produced from SimELIT were compared with SIMION and theoretical estimates. In addition, we report the computation of ion trajectories in electrodynamic fields within a planar FAIMS device operating at atmospheric pressure

    Table_1_Root system architecture for abiotic stress tolerance in potato: Lessons from plants.DOCX

    No full text
    The root is an important plant organ, which uptakes nutrients and water from the soil, and provides anchorage for the plant. Abiotic stresses like heat, drought, nutrients, salinity, and cold are the major problems of potato cultivation. Substantial research advances have been achieved in cereals and model plants on root system architecture (RSA), and so root ideotype (e.g., maize) have been developed for efficient nutrient capture to enhance nutrient use efficiency along with genes regulating root architecture in plants. However, limited work is available on potatoes, with a few illustrations on root morphology in drought and nitrogen stress. The role of root architecture in potatoes has been investigated to some extent under heat, drought, and nitrogen stresses. Hence, this mini-review aims to update knowledge and prospects of strengthening RSA research by applying multi-disciplinary physiological, biochemical, and molecular approaches to abiotic stress tolerance to potatoes with lessons learned from model plants, cereals, and other plants.</p
    corecore