90 research outputs found
Monterey bay aquarium research institute
Peer Reviewe
On Mixed-Initative Planning and Control for Autonomous Underwater Vehicles
Supervision and control of Autonomous underwater vehicles (AUVs) has traditionally been focused on an operator determining a priori the sequence of waypoints of a single vehicle for a mission. As AUVs become more ubiquitous as a scientific tool, we envision the need for controlling multiple vehicles which would impose less cognitive burden on the operator with a more abstract form of human-in-the-loop control. Such mixed-initiative methods in goal-oriented commanding are new for the oceanographic domain and we describe the motivations and preliminary experiments with multiple vehicles operating simultaneously in the water, using a shore-based automated planner
On Small Satellites for Oceanography: A Survey
The recent explosive growth of small satellite operations driven primarily
from an academic or pedagogical need, has demonstrated the viability of
commercial-off-the-shelf technologies in space. They have also leveraged and
shown the need for development of compatible sensors primarily aimed for Earth
observation tasks including monitoring terrestrial domains, communications and
engineering tests. However, one domain that these platforms have not yet made
substantial inroads into, is in the ocean sciences. Remote sensing has long
been within the repertoire of tools for oceanographers to study dynamic large
scale physical phenomena, such as gyres and fronts, bio-geochemical process
transport, primary productivity and process studies in the coastal ocean. We
argue that the time has come for micro and nano satellites (with mass smaller
than 100 kg and 2 to 3 year development times) designed, built, tested and
flown by academic departments, for coordinated observations with robotic assets
in situ. We do so primarily by surveying SmallSat missions oriented towards
ocean observations in the recent past, and in doing so, we update the current
knowledge about what is feasible in the rapidly evolving field of platforms and
sensors for this domain. We conclude by proposing a set of candidate ocean
observing missions with an emphasis on radar-based observations, with a focus
on Synthetic Aperture Radar.Comment: 63 pages, 4 figures, 8 table
Mixed-Initiative Activity Planning for Mars Rovers
One of the ground tools used to operate the Mars Exploration Rovers is a mixed-initiative planning system called MAPGEN. The role of the system is to assist operators building daily plans for each of the rovers, maximizing science return, while maintaining rover safety and abiding by science and engineering constraints. In this paper, we describe the MAPGEN system, focusing on the mixed-initiative planning aspect. We note important challenges, both in terms of human interaction and in terms of automated reasoning requirements. We then describe the approaches taken in MAPGEN, focusing on the novel methods developed by our team
Learning excursion sets of vector-valued Gaussian random fields for autonomous ocean sampling
Improving and optimizing oceanographic sampling is a crucial task for marine
science and maritime resource management. Faced with limited resources in
understanding processes in the water-column, the combination of statistics and
autonomous systems provide new opportunities for experimental design. In this
work we develop efficient spatial sampling methods for characterizing regions
defined by simultaneous exceedances above prescribed thresholds of several
responses, with an application focus on mapping coastal ocean phenomena based
on temperature and salinity measurements. Specifically, we define a design
criterion based on uncertainty in the excursions of vector-valued Gaussian
random fields, and derive tractable expressions for the expected integrated
Bernoulli variance reduction in such a framework. We demonstrate how this
criterion can be used to prioritize sampling efforts at locations that are
ambiguous, making exploration more effective. We use simulations to study and
compare properties of the considered approaches, followed by results from field
deployments with an autonomous underwater vehicle as part of a study mapping
the boundary of a river plume. The results demonstrate the potential of
combining statistical methods and robotic platforms to effectively inform and
execute data-driven environmental sampling
Symposium on Advances in Ocean Observation
editorial reviewe
Recommended from our members
Symposium on Advances in Ocean Observation
The Symposium on Advances in Ocean Observation was held in Terceira, Azores from 3–7 July 2022 to bridge the gap between computational and robotic sciences and ocean sciences by bringing together physical, biological, chemical oceanographers, ocean modelers remote sensing experts, marine robotics and autonomous platform experts, sensor technologists, experts in AI, adaptive sampling, and spatial statistics
Mixed-Initiative Planning in MAPGEN: Capabilities and Shortcomings
MAPGEN (Mixed-initiative Activity Plan GENerator) is a mixed-initiative system that employs automated constraint-based planning, scheduling, and temporal reasoning to assist the Mars Exploration Rover mission operations staff in generating the daily activity plans. This paper describes the mixed-initiative capabilities of MAPGEN, identifies shortcomings with the deployed system, and discusses ongoing work to address some of these shortcomings
Software for Planning Scientific Activities on Mars
Mixed-Initiative Activity Plan Generator (MAPGEN) is a ground-based computer program for planning and scheduling the scientific activities of instrumented exploratory robotic vehicles, within the limitations of available resources onboard the vehicle. MAPGEN is a combination of two prior software systems: (1) an activity-planning program, APGEN, developed at NASA s Jet Propulsion Laboratory and (2) the Europa planner/scheduler from NASA Ames Research Center. MAPGEN performs all of the following functions: Automatic generation of plans and schedules for scientific and engineering activities; Testing of hypotheses (or what-if analyses of various scenarios); Editing of plans; Computation and analysis of resources; and Enforcement and maintenance of constraints, including resolution of temporal and resource conflicts among planned activities. MAPGEN can be used in either of two modes: one in which the planner/scheduler is turned off and only the basic APGEN functionality is utilized, or one in which both component programs are used to obtain the full planning, scheduling, and constraint-maintenance functionality
- …