261 research outputs found
Deep CNN Framework for Audio Event Recognition using Weakly Labeled Web Data
The development of audio event recognition models requires labeled training
data, which are generally hard to obtain. One promising source of recordings of
audio events is the large amount of multimedia data on the web. In particular,
if the audio content analysis must itself be performed on web audio, it is
important to train the recognizers themselves from such data. Training from
these web data, however, poses several challenges, the most important being the
availability of labels : labels, if any, that may be obtained for the data are
generally {\em weak}, and not of the kind conventionally required for training
detectors or classifiers. We propose that learning algorithms that can exploit
weak labels offer an effective method to learn from web data. We then propose a
robust and efficient deep convolutional neural network (CNN) based framework to
learn audio event recognizers from weakly labeled data. The proposed method can
train from and analyze recordings of variable length in an efficient manner and
outperforms a network trained with {\em strongly labeled} web data by a
considerable margin
Large Margin Multiclass Gaussian Classification with Differential Privacy
As increasing amounts of sensitive personal information is aggregated into
data repositories, it has become important to develop mechanisms for processing
the data without revealing information about individual data instances. The
differential privacy model provides a framework for the development and
theoretical analysis of such mechanisms. In this paper, we propose an algorithm
for learning a discriminatively trained multi-class Gaussian classifier that
satisfies differential privacy using a large margin loss function with a
perturbed regularization term. We present a theoretical upper bound on the
excess risk of the classifier introduced by the perturbation.Comment: 14 page
- …