1,667 research outputs found
Inference through innovation processes tested in the authorship attribution task
Urn models for innovation capture fundamental empirical laws shared by several real-world processes. The so-called urn model with triggering includes, as particular cases, the urn representation of the two-parameter Poisson-Dirichlet process and the Dirichlet process, seminal in Bayesian non-parametric inference. In this work, we leverage this connection to introduce a general approach for quantifying closeness between symbolic sequences and test it within the framework of the authorship attribution problem. The method demonstrates high accuracy when compared to other related methods in different scenarios, featuring a substantial gain in computational efficiency and theoretical transparency. Beyond the practical convenience, this work demonstrates how the recently established connection between urn models and non-parametric Bayesian inference can pave the way for designing more efficient inference methods. In particular, the hybrid approach that we propose allows us to relax the exchangeability hypothesis, which can be particularly relevant for systems exhibiting complex correlation patterns and non-stationary dynamics.A class of urn-based models accounts for stochastic regularities observed in systems that exhibit innovation in diverse forms and temporal scales, from the appearance of new organisms to the evolution of language to daily new experiences. The authors investigate the predictive power of those models in inference problems, addressing the authorship attribution task as a case study
Optimization over time of reliable 5G-RAN with network function migrations
Resource optimization in 5G Radio Access Networks (5G-RAN) has to face the dynamics over time in networks
with increasing numbers of nodes and virtual network functions. In this context, multiple objectives need to
be jointly optimized, and key application requirements such as latency must be enforced. In addition, virtual
network functions realizing baseband processing are subject to failures of the cloud infrastructure, requiring
an additional level of reliability. Overall, this is a complex problem to solve, requiring fast algorithms to
cope with dynamic networks while avoiding resource overprovisioning. This paper considers the problem of
optimal virtual function placement in 5G-RAN with reliability against a single DU Hotel failure and proposes
a solution that takes service dynamics into account. Firstly, the joint optimization of the total number of
DU Hotels, of the RU–DU latency and of the backup DU sharing in a static traffic scenario is considered,
and the DUOpt algorithm, based on Lexicographic Optimization, is proposed for solving efficiently this multi-
objective problem. DUOpt splits the multi-objective problem into smaller Integer Linear Programming (ILP)
subproblems that are sequentially solved, adopting for each one the most effective methodology to reduce the
total execution time. The proposed DUOpt algorithm is extensively benchmarked to show its effectiveness in
optimization of medium to large size networks: in particular, it is shown to greatly outperform an aggregate
multi-objective approach, being able to compute optimal or close to optimal solutions for networks of several
tens of nodes in computing times of a few seconds. Then, the problem is extended to a dynamic traffic scenario
in which optimization is performed over time. In this context, in addition to the aforementioned objectives,
the total number of network function migrations induced by multiple reoptimizations must be kept to the
minimum. For solving efficiently this problem the DUMig algorithm is proposed, which extends and improves
DUOpt. Reoptimization over a time horizon of one day in an illustrative dynamic traffic scenario is performed
to evaluate the proposed DUMig algorithm against DUOpt, the latter being oblivious of the traffic dynamics.
DUMig shows remarkable savings in the total number of migrations (above 86.1% for primary virtual functions
and 83% for backup virtual functions) compared to DUOpt, while preserving near-optimal resource assignment
Commissioning of the MEG II tracker system
The MEG experiment at the Paul Scherrer Institut (PSI) represents the state
of the art in the search for the charged Lepton Flavour Violating (cLFV) decay. With the phase 1, MEG set the new world best
upper limit on the \mbox{BR}(\mu^+ \rightarrow e^+ \gamma) < 4.2 \times
10^{-13} (90% C.L.). With the phase 2, MEG II, the experiment aims at reaching
a sensitivity enhancement of about one order of magnitude compared to the
previous MEG result. The new Cylindrical Drift CHamber (CDCH) is a key detector
for MEG II. CDCH is a low-mass single volume detector with high granularity: 9
layers of 192 drift cells, few mm wide, defined by wires in a
stereo configuration for longitudinal hit localization. The filling gas mixture
is Helium:Isobutane (90:10). The total radiation length is
\mbox{X}_0, thus minimizing the Multiple Coulomb Scattering (MCS)
contribution and allowing for a single-hit resolution m and an
angular and momentum resolutions of 6 mrad and 90 keV/c respectively. This
article presents the CDCH commissioning activities at PSI after the wiring
phase at INFN Lecce and the assembly phase at INFN Pisa. The endcaps
preparation, HV tests and conditioning of the chamber are described, aiming at
reaching the final stable working point. The integration into the MEG II
experimental apparatus is described, in view of the first data taking with
cosmic rays and beam during the 2018 and 2019 engineering runs. The
first gas gain results are also shown. A full engineering run with all the
upgraded detectors and the complete DAQ electronics is expected to start in
2020, followed by three years of physics data taking.Comment: 10 pages, 12 figures, 1 table, proceeding at INSTR'20 conference,
accepted for publication in JINS
Displacement power spectrum measurement of a macroscopic optomechanical system at thermal equilibrium
The mirror relative motion of a suspended Fabry-Perot cavity is studied in
the frequency range 3-10 Hz. The experimental measurements presented in this
paper, have been performed at the Low Frequency Facility, a high finesse
optical cavity 1 cm long suspended to a mechanical seismic isolation system
identical to that one used in the VIRGO experiment. The measured relative
displacement power spectrum is compatible with a system at thermal equilibrium
within its environmental. In the frequency region above 3 Hz, where seismic
noise contamination is negligible, the measurement distribution is stationary
and Gaussian, as expected for a system at thermal equilibrium. Through a simple
mechanical model it is shown that: applying the fluctuation dissipation theorem
the measured power spectrum is reproduced below 90 Hz and noise induced by
external sources are below the measurement.Comment: 11 pages, 9 figures, 2 tables, to be submitte
Memory beyond memory in heart beating: an efficient way to detect pathological conditions
We study the long-range correlations of heartbeat fluctuations with the
method of diffusion entropy. We show that this method of analysis yields a
scaling parameter that apparently conflicts with the direct evaluation
of the distribution of times of sojourn in states with a given heartbeat
frequency. The strength of the memory responsible for this discrepancy is given
by a parameter , which is derived from real data. The
distribution of patients in the (, )-plane yields a neat
separation of the healthy from the congestive heart failure subjects.Comment: submitted to Physical Review Letters, 5 figure
NAD-Biosynthetic and Consuming Enzymes as Central Players of Metabolic Regulation of Innate and Adaptive Immune Responses in Cancer
Quality Assurance on a custom SiPMs array for the Mu2e experiment
The Mu2e experiment at Fermilab will search for the coherent
conversion on aluminum atoms. The detector system consists of a straw tube
tracker and a crystal calorimeter. A pre-production of 150 Silicon
Photomultiplier arrays for the Mu2e calorimeter has been procured. A detailed
quality assur- ance has been carried out on each SiPM for the determination of
its own operation voltage, gain, dark current and PDE. The measurement of the
mean-time-to-failure for a small random sample of the pro-production group has
been also completed as well as the determination of the dark current increase
as a function of the ioninizing and non-ioninizing dose.Comment: 4 pages, 10 figures, conference proceeding for NSS-MIC 201
Design, status and perspective of the Mu2e crystal calorimeter
The Mu2e experiment at Fermilab will search for the charged lepton flavor
violating process of neutrino-less coherent conversion in the field
of an aluminum nucleus. Mu2e will reach a single event sensitivity of about
that corresponds to four orders of magnitude improvements
with respect to the current best limit. The detector system consists of a straw
tube tracker and a crystal calorimeter made of undoped CsI coupled with Silicon
Photomultipliers. The calorimeter was designed to be operable in a harsh
environment where about 10 krad/year will be delivered in the hottest region
and work in presence of 1 T magnetic field. The calorimeter role is to perform
/e separation to suppress cosmic muons mimiking the signal, while
providing a high level trigger and a seeding the track search in the tracker.
In this paper we present the calorimeter design and the latest RD results.Comment: 4 pages, conference proceeding for a presentation held at TIPP'2017.
To be published on Springer Proceedings in Physic
The Mu2e undoped CsI crystal calorimeter
The Mu2e experiment at Fermilab will search for Charged Lepton Flavor
Violating conversion of a muon to an electron in an atomic field. The Mu2e
detector is composed of a tracker, an electromagnetic calorimeter and an
external system, surrounding the solenoid, to veto cosmic rays. The calorimeter
plays an important role to provide: a) excellent particle identification
capabilities; b) a fast trigger filter; c) an easier tracker track
reconstruction. Two disks, located downstream of the tracker, contain 674 pure
CsI crystals each. Each crystal is read out by two arrays of UV-extended SiPMs.
The choice of the crystals and SiPMs has been finalized after a thorough test
campaign. A first small scale prototype consisting of 51 crystals and 102 SiPM
arrays has been exposed to an electron beam at the BTF (Beam Test Facility) in
Frascati. Although the readout electronics were not the final, results show
that the current design is able to meet the timing and energy resolution
required by the Mu2e experiment.Comment: 6 pages, 8 figures, proceedings of the "Calorimetry for the high
energy frontier (CHEF17)" conference, 2-6 October 2017, Lyon, Franc
- …