55 research outputs found
Two-stage Kondo effect in a four-electron artificial atom
An artificial atom with four electrons is driven through a singlet-triplet
transition by varying the confining potential. In the triplet, a Kondo peak
with a narrow dip at drain-source voltage V_ds=0 is observed. The low energy
scale V_ds* characterizing the dip is consistent with predictions for the
two-stage Kondo effect. The phenomenon is studied as a function of temperature
T and magnetic field B, parallel to the two-dimensional electron gas. The low
energy scales T* and B* are extracted from the behavior of the zero-bias
conductance and are compared to the low energy scale V_ds* obtained from the
differential conductance. Good agreement is found between kT* and |g|muB*, but
eV_ds* is larger, perhaps because of nonequilibrium effects.Comment: 7 pages, 7 figures. Added labels on Fig. 3f and one referenc
Spin-Dependent Tunneling of Single Electrons into an Empty Quantum Dot
Using real-time charge sensing and gate pulsing techniques we measure the
ratio of the rates for tunneling into the excited and ground spin states of a
single-electron AlGaAs/GaAs quantum dot in a parallel magnetic field. We find
that the ratio decreases with increasing magnetic field until tunneling into
the excited spin state is completely suppressed. However, we find that by
adjusting the voltages on the surface gates to change the orbital configuration
of the dot we can restore tunneling into the excited spin state and that the
ratio reaches a maximum when the dot is symmetric.Comment: 4 pages, 3 figure
Spin wave emission by spin-orbit torque antennas
We study the generation of propagating spin waves in Ta/CoFeB waveguides by
spin-orbit torque antennas and compare them to conventional inductive antennas.
The spin-orbit torque was generated by a transverse microwave current across
the magnetic waveguide. The detected spin wave signals for an in-plane
magnetization across the waveguide (Damon-Eshbach configuration) exhibited the
expected phase rotation and amplitude decay upon propagation when the current
spreading was taken into account. Wavevectors up to about 6 rad/m could be
excited by the spin-orbit torque antennas despite the current spreading,
presumably due to the non-uniformity of the microwave current. The relative
magnitude of generated anti-damping spin-Hall and Oersted fields was calculated
within an analytic model and it was found that they contribute approximately
equally to the total effective field generated by the spin-orbit torque
antenna. Due to the ellipticity of the precession in the ultrathin waveguide
and the different orientation of the anti-damping spin-Hall and Oersted fields,
the torque was however still dominated by the Oersted field. The prospects for
obtaining a pure spin-orbit torque response are discussed, as are the energy
efficiency and the scaling properties of spin-orbit torque antennas.Comment: 20 pages, 5 figure
Electrical control of spin relaxation in a quantum dot
We demonstrate electrical control of the spin relaxation time T_1 between
Zeeman split spin states of a single electron in a lateral quantum dot. We find
that relaxation is mediated by the spin-orbit interaction, and by manipulating
the orbital states of the dot using gate voltages we vary the relaxation rate
W= (T_1)^-1 by over an order of magnitude. The dependence of W on orbital
confinement agrees with theoretical predictions and from these data we extract
the spin-orbit length. We also measure the dependence of W on magnetic field
and demonstrate that spin-orbit mediated coupling to phonons is the dominant
relaxation mechanism down to 1T, where T_1 exceeds 1s.Comment: 4 pages, 3 figure
Non-volatile spin wave majority gate at the nanoscale
A spin wave majority fork-like structure with feature size of 40\,nm, is
presented and investigated, through micromagnetic simulations. The structure
consists of three merging out-of-plane magnetization spin wave buses and four
magneto-electric cells serving as three inputs and an output. The information
of the logic signals is encoded in the phase of the transmitted spin waves and
subsequently stored as direction of magnetization of the magneto-electric cells
upon detection. The minimum dimensions of the structure that produce an
operational majority gate are identified. For all input combinations, the
detection scheme employed manages to capture the majority phase result of the
spin wave interference and ignore all reflection effects induced by the
geometry of the structure
Energy Dependent Tunneling in a Quantum Dot
We present measurements of the rates for an electron to tunnel on and off a
quantum dot, obtained using a quantum point contact charge sensor. The tunnel
rates show exponential dependence on drain-source bias and plunger gate
voltages. The tunneling process is shown to be elastic, and a model describing
tunneling in terms of the dot energy relative to the height of the tunnel
barrier quantitatively describes the measurements.Comment: 4 pages, 4 figure
Scaling trends and performance evaluation of 2-dimensional polarity-controllable FETs
Two-dimensional semiconducting materials of the transition-metal-dichalcogenide family, such as MoS2 and WSe2, have been intensively investigated in the past few years, and are considered as viable candidates for next-generation electronic devices. In this paper, for the first time, we study scaling trends and evaluate the performances of polarity-controllable devices realized with undoped mono- and bi-layer 2D materials. Using ballistic self-consistent quantum simulations, it is shown that, with the suitable channel material, such polarity-controllable technology can scale down to 5 nm gate lengths, while showing performances comparable to the ones of unipolar, physically-doped 2D electronic devices
- …