3,665 research outputs found

    Neutron methods for the direct determination of the magnetic induction in thick films

    Full text link
    We review different neutron methods which allow extracting directly the value of the magnetic induction in thick films: Larmor precession, Zeeman spatial beam-splitting and neutron spin resonance. Resulting parameters obtained by the neutron methods and standard magnetometry technique are presented and compared. The possibilities and specificities of the neutron methods are discussed

    Quantum States of Neutrons in Magnetic Thin Films

    Full text link
    We have studied experimentally and theoretically the interaction of polarized neutrons with magnetic thin films and magnetic multilayers. In particular, we have analyzed the behavior of the critical edges for total external reflection in both cases. For a single film we have observed experimentally and theoretically a simple behavior: the critical edges remain fixed and the intensity varies according to the angle between the polarization axis and the magnetization vector inside the film. For the multilayer case we find that the critical edges for spin up and spin down polarized neutrons move towards each other as a function of the angle between the magnetization vectors in adjacent ferromagnetic films. Although the results for multilayers and single thick layers appear to be different, in fact the same spinor method explains both results. An interpretation of the critical edges behavior for the multilyers as a superposition of ferromagnetic and antifferomagnetic states is given.Comment: 6 pages, 5 figure

    Polarized neutron channeling as a tool for the investigations of weakly magnetic thin films

    Full text link
    We present and apply a new method to measure directly weak magnetization in thin films. The polarization of a neutron beam channeling through a thin film structure is measured after exiting the structure edge as a microbeam. We have applied the method to a tri-layer thin film structure acting as a planar waveguide for polarized neutrons. The middle guiding layer is a rare earth based ferrimagnetic material TbCo5 with a low magnetization of about 20 mT. We demonstrate that the channeling method is more sensitive than the specular neutron reflection method

    Divergence of the Magnetic Gr\"{u}neisen Ratio at the Field-Induced Quantum Critical Point in YbRh2_2Si2_2

    Full text link
    The heavy fermion compound YbRh2_2Si2_2 is studied by low-temperature magnetization M(T)M(T) and specific-heat C(T)C(T) measurements at magnetic fields close to the quantum critical point (Hc=0.06H_c=0.06 T, H⊥cH\perp c). Upon approaching the instability, dM/dTdM/dT is more singular than C(T)C(T), leading to a divergence of the magnetic Gr\"uneisen ratio Γmag=−(dM/dT)/C\Gamma_{\rm mag}=-(dM/dT)/C. Within the Fermi liquid regime, Γmag=−Gr(H−Hcfit)\Gamma_{\rm mag}=-G_r(H-H_c^{fit}) with Gr=−0.30±0.01G_r=-0.30\pm 0.01 and Hcfit=(0.065±0.005)H_c^{fit}=(0.065\pm 0.005) T which is consistent with scaling behavior of the specific-heat coefficient in YbRh2_2(Si0.95_{0.95}Ge0.05_{0.05})2_2. The field-dependence of dM/dTdM/dT indicates an inflection point of the entropy as a function of magnetic field upon passing the line T⋆(H)T^\star(H) previously observed in Hall- and thermodynamic measurements.Comment: 4 pages, 3 Figure

    Modern Statistical Methods in Oceanography: A Hierarchical Perspective

    Full text link
    Processes in ocean physics, air-sea interaction and ocean biogeochemistry span enormous ranges in spatial and temporal scales, that is, from molecular to planetary and from seconds to millennia. Identifying and implementing sustainable human practices depend critically on our understandings of key aspects of ocean physics and ecology within these scale ranges. The set of all ocean data is distorted such that three- and four-dimensional (i.e., time-dependent) in situ data are very sparse, while observations of surface and upper ocean properties from space-borne platforms have become abundant in the past few decades. Precisions in observations of all types vary as well. In the face of these challenges, the interface between Statistics and Oceanography has proven to be a fruitful area for research and the development of useful models. With the recognition of the key importance of identifying, quantifying and managing uncertainty in data and models of ocean processes, a hierarchical perspective has become increasingly productive. As examples, we review a heterogeneous mix of studies from our own work demonstrating Bayesian hierarchical model applications in ocean physics, air-sea interaction, ocean forecasting and ocean ecosystem models. This review is by no means exhaustive and we have endeavored to identify hierarchical modeling work reported by others across the broad range of ocean-related topics reported in the statistical literature. We conclude by noting relevant ocean-statistics problems on the immediate research horizon, and some technical challenges they pose, for example, in terms of nonlinearity, dimensionality and computing.Comment: Published in at http://dx.doi.org/10.1214/13-STS436 the Statistical Science (http://www.imstat.org/sts/) by the Institute of Mathematical Statistics (http://www.imstat.org

    Neutron resonances in planar waveguides

    Full text link
    Results of experimental investigations of a neutron resonances width in planar waveguides using the time-of-flight reflectometer REMUR of the IBR-2 pulsed reactor are reported and comparison with theoretical calculations is presented. The intensity of the neutron microbeam emitted from the waveguide edge was registered as a function of the neutron wavelength and the incident beam angular divergence. The possible applications of this method for the investigations of layered nanostructures are discussed
    • …
    corecore