32 research outputs found

    Neural control of vocalization in bats: mapping of brainstem areas with electrical microstimulation eliciting species-specific echolocation calls in the rufous horseshoe bat

    Get PDF
    1. The functional role of brainstem structures in the emission of echolocation calls was investigated in the rufous horseshoe bat, Rhinolophus rouxi, with electrical low-current microstimulation procedures. 2. Vocalizations without temporal and/or spectral distortions could be consistently elicited at low threshold currents (typically below 10 A) within three clearly circumscribed brainstem areas, namely, the deep layers and ventral parts of the intermediate layers of the superior colliculus (SC), the deep mesencephalic nucleus (NMP) in the dorsal and lateral midbrain reticular formation and in a distinct area medial to the rostral parts of the dorsal nucleus of the lateral lemniscus. The mean latencies in the three vocal areas between the start of the electrical stimulus and the elicited vocalizations were 47 msec, 38 msec and 31 msec, respectively. 3. In pontine regions and the cuneiform nucleus adjacent to these three vocal areas, thresholds for eliciting vocalizations were also low, but the vocalizations showed temporal and/or spectral distortions and were often accompanied or followed by arousal of the animal. 4. Stimulus intensity systematically influenced vocalization parameters at only a few brain sites. In the caudo-ventra1 portions of the deep superior colliculus the sound pressure level of the vocalizations systematically increased with stimulus intensity. Bursts of multiple vocalizations were induced at locations ventral to the rostral parts of the cuneiform nucleus. No stimulus-intensity dependent frequency changes of the emitted vocalizations were observed. 5. The respiratory cycle was synchronized to the electrical stimuli in all regions where vocalizations could be elicited as well as in more ventrally and medially adjacent areas not yielding vocalizations on stimulation. 6. The possible functional involvement of the vocal structures in the audio-vocal feedback system of the Dopplercompensating horseshoe bat is discussed

    Midbrain areas as candidates for audio-vocal interface in echolocating bats

    Get PDF

    Midbrain areas as candidates for audio-vocal interface in echolocating bats

    Get PDF

    A stereotaxic method for small animals using experimentally determined reference profiles

    Get PDF
    In bats conventional stereotaxic methods do not yield sufficient positional accuracy to allow reliable recordings and tracer injections in subnuclei of the auditory system. In a newly developed stereotaxic system experimentally measured patterns of skull profile lines are used to define the animal's brain position with an accuracy of ±100 μm. By combining the neurophysiological stereotaxic procedure with a standardization of the neuroanatomical processing of the brains, the location of recordings, stimulations or injections can be readily transformed into brain atlas coordinates. This facilitates the compilation and comparison of data within and among animals. The system is not restricted to use in bats and can be readily adapted to other experimental animals

    Restricted loss of olivocochlear but not vestibular efferent neurons in the senescent gerbil (Meriones unguiculatus)

    Get PDF
    Degeneration of hearing and vertigo are symptoms of age related auditory and vestibular disorders reflecting multrfactorial changes in the peripheral and central nervous system whose interplay remains largely unknown. Originating bilaterally in the brain stem, vestibular and auditory efferent cholinergic projections exert feedback control on the peripheral sensory organs, and modulate sensory processing. We studied age-related changes in the auditory and vestibular efferent systems by evaluating number of cholinergic efferent neurons in young adult and aged gerbils, and in cholinergic trigeminal neurons serving as a control for efferents not related to the inner ear. We observed a significant loss of olivocochlear (OC) neurons in aged compared to young adult animals, whereas the overall number of lateral superior olive (LSO) cells was not reduced in aging. Although the loss of lateral and medial olivocochlear (MOC) neurons was uniform and equal on both sides of the brain, there were frequency-related differences within the lateral olivocochlear (LOC) neurons, where the decline was larger in the medial limb of the superior olivary nucleus (high frequency representation) than in the lateral limb (middle-to-low frequency representation). In contrast, neither the number of vestibular efferent neurons, nor the population of motor trigeminal neurons were significantly reduced in the aged animals. These observations suggest differential effects of aging on the respective cholinergic efferent brainstem systems

    Structural and functional connectivity between the lateral posterior-pulvinar complex and primary visual cortex in the ferret

    Get PDF
    The role of higher-order thalamic structures in sensory processing remains poorly understood. Here, we used the ferret (Mustela putorius furo) as a novel model species for the study of the lateral posterior-pulvinar complex (LP/pulvinar) and its structural and functional connectivity with area 17 (primary visual cortex, V1). We found reciprocal anatomical connections between the lateral part of the Lateral Posterior Nucleus of the LP/pulvinar (LPl) and V1. In order to investigate the role of this feedback loop between LPl and V1 in shaping network activity, we determined the functional interactions between LPl and supragranular, granular, and infragranular layers of V1 by recording multiunit activity (MUA) and local field potential (LFP). Coherence was strongest between LPl and supragranular V1 with the most distinct peaks in the delta and alpha frequency bands. Inter-area interaction measured by spike-phase coupling identified the delta frequency band dominated by infragranular V1 and multiple frequency bands that were most pronounced in supragranular V1. This inter-area coupling was differentially modulated by full-field synthetic and naturalistic visual stimulation. We also found that visual responses in LPl were distinct from the ones in V1 in terms of their reliability. Together, our data support a model of multiple communication channels between the LPl and layers of V1 that are enabled by oscillations in different frequency bands. This demonstration of anatomical and functional connectivity between LPl and V1 in ferrets provides a roadmap for studying the interaction dynamics during behavior and a template for identifying activity dynamics of other thalamic feedback loops

    Resting state network topology of the ferret brain

    Get PDF
    Resting state functional magnetic resonance imaging (rsfMRI) has emerged as a versatile tool for non-invasive measurement of functional connectivity patterns in the brain. RsfMRI brain dynamics in rodents, non-human primates, and humans share similar properties; however, little is known about the resting state functional connectivity patterns in the ferret, an animal model with high potential for developmental and cognitive translational study. To address this knowledge-gap, we performed rsfMRI on anesthetized ferrets using a 9.4 tesla MRI scanner, and subsequently performed group-level independent component analysis (gICA) to identify functionally connected brain networks. Group-level ICA analysis revealed distributed sensory, motor, and higher-order networks in the ferret brain. Subsequent connectivity analysis showed interconnected higher-order networks that constituted a putative default mode network (DMN), a network that exhibits altered connectivity in neuropsychiatric disorders. Finally, we assessed ferret brain topological efficiency using graph theory analysis and found that the ferret brain exhibits small-world properties. Overall, these results provide additional evidence for pan-species resting-state networks, further supporting ferret-based studies of sensory and cognitive function

    The auditory cortex of the bat Phyllostomus discolor: Localization and organization of basic response properties

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The mammalian auditory cortex can be subdivided into various fields characterized by neurophysiological and neuroarchitectural properties and by connections with different nuclei of the thalamus. Besides the primary auditory cortex, echolocating bats have cortical fields for the processing of temporal and spectral features of the echolocation pulses. This paper reports on location, neuroarchitecture and basic functional organization of the auditory cortex of the microchiropteran bat <it>Phyllostomus discolor </it>(family: Phyllostomidae).</p> <p>Results</p> <p>The auditory cortical area of <it>P. discolor </it>is located at parieto-temporal portions of the neocortex. It covers a rostro-caudal range of about 4800 μm and a medio-lateral distance of about 7000 μm on the flattened cortical surface.</p> <p>The auditory cortices of ten adult <it>P. discolor </it>were electrophysiologically mapped in detail. Responses of 849 units (single neurons and neuronal clusters up to three neurons) to pure tone stimulation were recorded extracellularly. Cortical units were characterized and classified depending on their response properties such as best frequency, auditory threshold, first spike latency, response duration, width and shape of the frequency response area and binaural interactions.</p> <p>Based on neurophysiological and neuroanatomical criteria, the auditory cortex of <it>P. discolor </it>could be subdivided into anterior and posterior ventral fields and anterior and posterior dorsal fields. The representation of response properties within the different auditory cortical fields was analyzed in detail. The two ventral fields were distinguished by their tonotopic organization with opposing frequency gradients. The dorsal cortical fields were not tonotopically organized but contained neurons that were responsive to high frequencies only.</p> <p>Conclusion</p> <p>The auditory cortex of <it>P. discolor </it>resembles the auditory cortex of other phyllostomid bats in size and basic functional organization. The tonotopically organized posterior ventral field might represent the primary auditory cortex and the tonotopically organized anterior ventral field seems to be similar to the anterior auditory field of other mammals. As most energy of the echolocation pulse of <it>P. discolor </it>is contained in the high-frequency range, the non-tonotopically organized high-frequency dorsal region seems to be particularly important for echolocation.</p
    corecore