369 research outputs found
Hypermedia by coincidence
We introduce an approach to linking hypermedia documents dynamically in a decentralised, peer-to-peer manner using resources that are available by coincidence, without explicit configuration. The particular approach presented utilises an open platform in combination with Distributed Link Service technology enabling dynamic hypertext generation
A Semantic Grid Oriented to E-Tourism
With increasing complexity of tourism business models and tasks, there is a
clear need of the next generation e-Tourism infrastructure to support flexible
automation, integration, computation, storage, and collaboration. Currently
several enabling technologies such as semantic Web, Web service, agent and grid
computing have been applied in the different e-Tourism applications, however
there is no a unified framework to be able to integrate all of them. So this
paper presents a promising e-Tourism framework based on emerging semantic grid,
in which a number of key design issues are discussed including architecture,
ontologies structure, semantic reconciliation, service and resource discovery,
role based authorization and intelligent agent. The paper finally provides the
implementation of the framework.Comment: 12 PAGES, 7 Figure
Navigational Hypertext Models For Physical Hypermedia Environments
In this paper we identify a common aim between ubiquitous computing and hypertext systems: the desire to present navigable, located and structured information. We propose that existing navigational hypertext models might be valuable as a formalisation of ubiquitous information and explore the challenges of applying standard hypertext operations, such as anchor resolution, display and link traversal, to links that have physical anchors
A Semantically Enabled Service Architecture for Mashups over Streaming and Stored Data
Sensing devices are increasingly being deployed to monitor
the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g. good emergency response. However, in order to interpret the readings from the sensors, the data needs to be put in context through correlation with other sensor readings, sensor data histories, and stored data, as well as juxtaposing with maps and forecast models. In this paper we use a good emergency response planning application to identify requirements for a semantic sensor web. We propose a generic service architecture to satisfy the requirements that uses semantic annotations to support well-informed interactions between the services. We present the SemSor-Grid4Env realisation of the architecture and illustrate its capabilities in the context of the example application
Computational Modeling of Single-Cell Migration::The Leading Role of Extracellular Matrix Fibers
Cell migration is vitally important in a wide variety of biological contexts ranging from embryonic development and wound healing to malignant diseases such as cancer. It is a very complex process that is controlled by intracellular signaling pathways as well as the cell's microenvironment. Due to its importance and complexity, it has been studied for many years in the biomedical sciences, and in the last 30 years it also received an increasing amount of interest from theoretical scientists and mathematical modelers. Here we propose a force-based, individual-based modeling framework that links single-cell migration with matrix fibers and cell-matrix interactions through contact guidance and matrix remodelling. With this approach, we can highlight the effect of the cell's environment on its migration. We investigate the influence of matrix stiffness, matrix architecture, and cell speed on migration using quantitative measures that allow us to compare the results to experiments
Recommended from our members
A semantic sensor web for environmental decision support applications
Sensing devices are increasingly being deployed to monitor the physical world around us. One class of application for which sensor data is pertinent is environmental decision support systems, e.g., flood emergency response. For these applications, the sensor readings need to be put in context by integrating them with other sources of data about the surrounding environment. Traditional systems for predicting and detecting floods rely on methods that need significant human resources. In this paper we describe a semantic sensor web architecture for integrating multiple heterogeneous datasets, including live and historic sensor data, databases, and map layers. The architecture provides mechanisms for discovering datasets, defining integrated views over them, continuously receiving data in real-time, and visualising on screen and interacting with the data. Our approach makes extensive use of web service standards for querying and accessing data, and semantic technologies to discover and integrate datasets. We demonstrate the use of our semantic sensor web architecture in the context of a flood response planning web application that uses data from sensor networks monitoring the sea-state around the coast of England
Mathematical practice, crowdsourcing, and social machines
The highest level of mathematics has traditionally been seen as a solitary
endeavour, to produce a proof for review and acceptance by research peers.
Mathematics is now at a remarkable inflexion point, with new technology
radically extending the power and limits of individuals. Crowdsourcing pulls
together diverse experts to solve problems; symbolic computation tackles huge
routine calculations; and computers check proofs too long and complicated for
humans to comprehend.
Mathematical practice is an emerging interdisciplinary field which draws on
philosophy and social science to understand how mathematics is produced. Online
mathematical activity provides a novel and rich source of data for empirical
investigation of mathematical practice - for example the community question
answering system {\it mathoverflow} contains around 40,000 mathematical
conversations, and {\it polymath} collaborations provide transcripts of the
process of discovering proofs. Our preliminary investigations have demonstrated
the importance of "soft" aspects such as analogy and creativity, alongside
deduction and proof, in the production of mathematics, and have given us new
ways to think about the roles of people and machines in creating new
mathematical knowledge. We discuss further investigation of these resources and
what it might reveal.
Crowdsourced mathematical activity is an example of a "social machine", a new
paradigm, identified by Berners-Lee, for viewing a combination of people and
computers as a single problem-solving entity, and the subject of major
international research endeavours. We outline a future research agenda for
mathematics social machines, a combination of people, computers, and
mathematical archives to create and apply mathematics, with the potential to
change the way people do mathematics, and to transform the reach, pace, and
impact of mathematics research.Comment: To appear, Springer LNCS, Proceedings of Conferences on Intelligent
Computer Mathematics, CICM 2013, July 2013 Bath, U
A Geological Itinerary Through the Southern Apennine Thrust-Belt (Basilicata—Southern Italy)
Open access via Springer Compact AgreementPeer reviewedPublisher PD
- …