57 research outputs found

    Flexible power converters for the fault tolerant operation of Micro-Grids

    Get PDF
    The progressive penetration level of Distributed Generation (DG) is destined to cause deep changes in the existing distribution networks no longer considered as passive terminations of the whole electrical system. A possible solution is the realization of small networks, namely the Micro-Grids, reproducing in themselves the structure of the main production and distribution of the electrical energy system. In order to gain an adequate reliability level of the microgrids the individuation and the management of the faults with the goal of maintaining the micro-grid operation (fault tolerant operation) is quite important. In the present paper flexible power converters and a companion control algorithm for the fault tolerant operation of microgrids are presented. The effectiveness of such an algorithm and of the fault tolerant power converters are verified through computer simulations

    Fault Tolerant Ancillary Function of Power Converters in Distributed Generation Power System within a Microgrid Structure

    Get PDF
    Distributed generation (DG) is deeply changing the existing distribution networks which become very sophisticated and complex incorporating both active and passive equipment. The simplification of their management can be obtained assuming a structure with small networks, namely, microgrids, reproducing, in a smaller scale, the structure of large networks including production, transmission, and distribution of the electrical energy. Power converters in distributed generation systems carry on some different ancillary functions as, for example, grid synchronization, islanding detection, fault ride through, and so on. In view of an optimal utilization of the generated electrical power, fault tolerant operation is to be considered as a suitable ancillary function for the next future. This paper presents a complete modeling of fault tolerant inverters able to simulate the main fault type occurrence and a control algorithm for fault tolerant converters suitable for microgrids. After the model description, formulated in terms of healthy device and leg binary variables, and the illustration of the fault tolerant control strategy, the paper shows how the control preserves power quality when the converter works in the linear range. The effectiveness of the proposed approach and control is shown through computer simulations and experimental results

    Comprehensive Modeling and Experimental Testing of Fault Detection and Management of a Nonredundant Fault-Tolerant VSI

    Get PDF
    This paper presents an investigation and a comprehensive analysis on fault operations in a conventional three-phase voltage source inverter. After an introductory section dealing with power converter reliability and fault analysis issues in power electronics, a generalized switching function accounting for both healthy and faulty conditions and an easy and feasible method to embed fault diagnosis and reconfiguration within the control algorithm are introduced. The proposed system has simple and compact implementation. Experimental results operating both at open- and closed-loop current control, obtained using a test bench realized using a dSPACE system and the fault-tolerant inverter prototype demonstrate that the proposed solution is effective and feasible and makes all faults easily managed by the controller itself

    An IPMSM torque/weight and torque/moment of inertia ratio optimization

    Get PDF
    In this paper, a torque/weight and torque/moment of inertia ratio optimization procedure for interior permanent magnet syncronous motors (IPMSMs) is presented. More in detail, a performance comparison between several IPMSM rotor structures has been carried out in order to determine the optimum geometry that can maximize the torque/weight and torque/moment of inertia ratios. A commercial motor, with known electrical and mechanical characteristics, has been taken as reference. Its rotor structure has been modified several times, obtaining different rotor geometries and, therefore, many IPMSM models with different electrical and mechanical characteristics. The finite element method (FEM) analysis of each IPMSMs has been performed using the software FEMM, allowing to determine the related torque/load-angle characteristics. From the comparison between the torque/load-angle characteristics of the different IPMSM structures, it can be stated that significant performance improvements can be obtained in dependence not only of the type of permanent magnets and their direction of magnetization, but also of the PM displacement within the rotor

    A photovoltaic system suitable for the battery pack charging of an electrically power assisted velocipede

    No full text
    The paper describes the designing, sizing, realization and setting up of a complete system suitable for the management of an electrically power assisted velocipede using a photovoltaic module for the charging of the batteries. In the work an overview on the sustainable mobility needs and on the commercial electrically power assisted velocipedes is presented and the "Ecolapa" prototype, set up in the SDELab laboratory of Palermo University, is precisely described underlining the designing, implementation and setting up phases of the photovoltaic charging system settled up on the velocipede. Moreover tests oriented on the setting up of the whole system and validation tests on the prototype are presented with the aim of determine the growing up of performances, with particular attention on the autonomy, by using the management system here proposed. The results show haw is possible to reach an increase of the 30% of the "Ecolapa" prototype autonomy by using the, by the Authors conceived, management system
    corecore