447 research outputs found
Quantum adiabatic optimization and combinatorial landscapes
In this paper we analyze the performance of the Quantum Adiabatic Evolution
algorithm on a variant of Satisfiability problem for an ensemble of random
graphs parametrized by the ratio of clauses to variables, . We
introduce a set of macroscopic parameters (landscapes) and put forward an
ansatz of universality for random bit flips. We then formulate the problem of
finding the smallest eigenvalue and the excitation gap as a statistical
mechanics problem. We use the so-called annealing approximation with a
refinement that a finite set of macroscopic variables (versus only energy) is
used, and are able to show the existence of a dynamic threshold
starting with some value of K -- the number of variables in
each clause. Beyond dynamic threshold, the algorithm should take exponentially
long time to find a solution. We compare the results for extended and
simplified sets of landscapes and provide numerical evidence in support of our
universality ansatz. We have been able to map the ensemble of random graphs
onto another ensemble with fluctuations significantly reduced. This enabled us
to obtain tight upper bounds on satisfiability transition and to recompute the
dynamical transition using the extended set of landscapes.Comment: 41 pages, 10 figures; added a paragraph on paper's organization to
the introduction, fixed reference
On Randomized Algorithms for Matching in the Online Preemptive Model
We investigate the power of randomized algorithms for the maximum cardinality
matching (MCM) and the maximum weight matching (MWM) problems in the online
preemptive model. In this model, the edges of a graph are revealed one by one
and the algorithm is required to always maintain a valid matching. On seeing an
edge, the algorithm has to either accept or reject the edge. If accepted, then
the adjacent edges are discarded. The complexity of the problem is settled for
deterministic algorithms.
Almost nothing is known for randomized algorithms. A lower bound of
is known for MCM with a trivial upper bound of . An upper bound of
is known for MWM. We initiate a systematic study of the same in this paper with
an aim to isolate and understand the difficulty. We begin with a primal-dual
analysis of the deterministic algorithm due to McGregor. All deterministic
lower bounds are on instances which are trees at every step. For this class of
(unweighted) graphs we present a randomized algorithm which is
-competitive. The analysis is a considerable extension of the
(simple) primal-dual analysis for the deterministic case. The key new technique
is that the distribution of primal charge to dual variables depends on the
"neighborhood" and needs to be done after having seen the entire input. The
assignment is asymmetric: in that edges may assign different charges to the two
end-points. Also the proof depends on a non-trivial structural statement on the
performance of the algorithm on the input tree.
The other main result of this paper is an extension of the deterministic
lower bound of Varadaraja to a natural class of randomized algorithms which
decide whether to accept a new edge or not using independent random choices
Space-Efficient Parallel Algorithms for Combinatorial Search Problems
We present space-efficient parallel strategies for two fundamental
combinatorial search problems, namely, backtrack search and branch-and-bound,
both involving the visit of an -node tree of height under the assumption
that a node can be accessed only through its father or its children. For both
problems we propose efficient algorithms that run on a -processor
distributed-memory machine. For backtrack search, we give a deterministic
algorithm running in time, and a Las Vegas algorithm requiring
optimal time, with high probability. Building on the backtrack
search algorithm, we also derive a Las Vegas algorithm for branch-and-bound
which runs in time, with high probability. A
remarkable feature of our algorithms is the use of only constant space per
processor, which constitutes a significant improvement upon previous algorithms
whose space requirements per processor depend on the (possibly huge) tree to be
explored.Comment: Extended version of the paper in the Proc. of 38th International
Symposium on Mathematical Foundations of Computer Science (MFCS
Space--Time Tradeoffs for Subset Sum: An Improved Worst Case Algorithm
The technique of Schroeppel and Shamir (SICOMP, 1981) has long been the most
efficient way to trade space against time for the SUBSET SUM problem. In the
random-instance setting, however, improved tradeoffs exist. In particular, the
recently discovered dissection method of Dinur et al. (CRYPTO 2012) yields a
significantly improved space--time tradeoff curve for instances with strong
randomness properties. Our main result is that these strong randomness
assumptions can be removed, obtaining the same space--time tradeoffs in the
worst case. We also show that for small space usage the dissection algorithm
can be almost fully parallelized. Our strategy for dealing with arbitrary
instances is to instead inject the randomness into the dissection process
itself by working over a carefully selected but random composite modulus, and
to introduce explicit space--time controls into the algorithm by means of a
"bailout mechanism"
Minimal Coverability Set for Petri Nets: Karp and Miller Algorithm with Pruning
This paper presents the Monotone-Pruning algorithm (MP) for computing the minimal coverability set of Petri nets. The original Karp and Miller algorithm (K&M) unfolds the reachability graph of a Petri net and uses acceleration on branches to ensure termination. The MP algorithm improves the K&M algorithm by adding pruning between branches of the K&M tree. This idea was first introduced in the Minimal Coverability Tree algorithm (MCT), however it was recently shown to be incomplete. The MP algorithm can be viewed as the MCT algorithm with a slightly more aggressive pruning strategy which ensures completeness. Experimental results show that this algorithm is a strong improvement over the K&M algorithm as it dramatically reduces the exploration tree
Nondeterministic Instance Complexity and Proof Systems with Advice
Motivated by strong Karp-Lipton collapse results in bounded arithmetic, Cook and Krajíček [1] have recently introduced the notion of propositional proof systems with advice. In this paper we investigate the following question: Given a language L , do there exist polynomially bounded proof systems with advice for L ? Depending on the complexity of the underlying language L and the amount and type of the advice used by the proof system, we obtain different characterizations for this problem. In particular, we show that the above question is tightly linked with the question whether L has small nondeterministic instance complexity
Overcoming controllability problems in distributed testing from an input output transition system
This is the Pre-print version of the Article. The official published version can be accessed from the link below - Copyright @ 2012 Springer VerlagThis paper concerns the testing of a system with physically distributed interfaces, called ports, at which it interacts with its environment. We place a tester at each port and the tester at port p observes events at p only. This can lead to controllability problems, where the observations made by the tester at a port p are not sufficient for it to be able to know when to send an input. It is known that there are test objectives, such as executing a particular transition, that cannot be achieved if we restrict attention to test cases that have no controllability problems. This has led to interest in schemes where the testers at the individual ports send coordination messages to one another through an external communications network in order to overcome controllability problems. However, such approaches have largely been studied in the context of testing from a deterministic finite state machine. This paper investigates the use of coordination messages to overcome controllability problems when testing from an input output transition system and gives an algorithm for introducing sufficient messages. It also proves that the problem of minimising the number of coordination messages used is NP-hard
Dictionary matching in a stream
We consider the problem of dictionary matching in a stream. Given a set of
strings, known as a dictionary, and a stream of characters arriving one at a
time, the task is to report each time some string in our dictionary occurs in
the stream. We present a randomised algorithm which takes O(log log(k + m))
time per arriving character and uses O(k log m) words of space, where k is the
number of strings in the dictionary and m is the length of the longest string
in the dictionary
MIMO free-space optical communication employing subcarrier intensity modulation in atmospheric turbulence channels
In this paper, we analyse the error performance of transmitter/receiver array free-space optical (FSO) communication system employing binary phase shift keying (BPSK) subcarrier intensity modulation (SIM) in clear but turbulent atmospheric channel. Subcarrier modulation is employed to eliminate the need for adaptive threshold detector. Direct detection is employed at the receiver and each subcarrier is subsequently demodulated coherently. The effect of irradiance fading is mitigated with an array of lasers and photodetectors. The received signals are linearly combined using the optimal maximum ratio combining (MRC), the equal gain combining (EGC) and the selection combining (SelC). The bit error rate (BER) equations are derived considering additive white Gaussian noise and log normal intensity fluctuations. This work is part of the EU COST actions and EU projects
Node-balancing by edge-increments
Suppose you are given a graph with a weight assignment
and that your objective is to modify using legal
steps such that all vertices will have the same weight, where in each legal
step you are allowed to choose an edge and increment the weights of its end
points by .
In this paper we study several variants of this problem for graphs and
hypergraphs. On the combinatorial side we show connections with fundamental
results from matching theory such as Hall's Theorem and Tutte's Theorem. On the
algorithmic side we study the computational complexity of associated decision
problems.
Our main results are a characterization of the graphs for which any initial
assignment can be balanced by edge-increments and a strongly polynomial-time
algorithm that computes a balancing sequence of increments if one exists.Comment: 10 page
- …