133 research outputs found
Rate-Based Transition Systems for Stochastic Process Calculi
A variant of Rate Transition Systems (RTS), proposed by Klin and Sassone, is introduced and used as the basic model for defining stochastic behaviour of processes. The transition relation used in our variant associates to each process, for each action, the set of possible futures paired with a measure indicating their rates. We show how RTS can be used for providing the operational semantics of stochastic extensions of classical formalisms, namely CSP and CCS. We also show that our semantics for stochastic CCS guarantees associativity of parallel composition. Similarly, in contrast with the original definition by Priami, we argue that a semantics for stochastic π-calculus can be provided that guarantees associativity of parallel composition
A Calculus of Bounded Capacities
Resource control has attracted increasing interest in foundational research on distributed systems. This paper focuses on space control and develops an analysis of space usage in the context of an ambient-like calculus with bounded capacities and weighed processes, where migration and activation require space. A type system complements the dynamics of the calculus by providing static guarantees that the intended capacity bounds are preserved throughout the computation
Anomalous Pseudoscalar-Photon Vertex In and Out of Equilibrium
The anomalous pseudoscalar-photon vertex is studied in real time in and out
of equilibrium in a constituent quark model. The goal is to understand the
in-medium modifications of this vertex, exploring the possibility of enhanced
isospin breaking by electromagnetic effects as well as the formation of neutral
pion condensates in a rapid chiral phase transition in peripheral,
ultrarelativistic heavy-ion collisions. In equilibrium the effective vertex is
afflicted by infrared and collinear singularities that require hard thermal
loop (HTL) and width corrections of the quark propagator. The resummed
effective equilibrium vertex vanishes near the chiral transition in the chiral
limit. In a strongly out of equilibrium chiral phase transition we find that
the chiral condensate drastically modifies the quark propagators and the
effective vertex. The ensuing dynamics for the neutral pion results in a
potential enhancement of isospin breaking and the formation of
condensates. While the anomaly equation and the axial Ward identity are not
modified by the medium in or out of equilibrium, the effective real-time
pseudoscalar-photon vertex is sensitive to low energy physics.Comment: Revised version to appear in Phys. Rev. D. 42 pages, 4 figures, uses
Revte
Thermal rho and sigma mesons from chiral symmetry and unitarity
We study the temperature evolution of the rho and sigma mass and width, using
a unitary chiral approach. The one-loop pion-pion scattering amplitude in
Chiral Perturbation Theory at finite temperature is unitarized via the Inverse
Amplitude Method. Our results predict a clear increase with T of both the rho
and sigma widths. The masses decrease slightly for high T, while the
rho-pion-pion coupling increases. The rho behavior seems to be favored by
experimental results. In the sigma case, it signals chiral symmetry
restoration.Comment: 5 pages, 5 figures, revtex. References and brief comments added.
Final version to appear in Phys. Rev.
Chiral Symmetry and light resonances in hot and dense matter
We present a study of the scattering amplitude in the and
channels at finite temperature and nuclear density within a chiral
unitary framework. Meson resonances are dynamically generated in our approach,
which allows us to analyze the behavior of their associated scattering poles
when the system is driven towards chiral symmetry restoration. Medium effects
are incorporated in three ways: (a) by thermal corrections of the unitarized
scattering amplitudes, (b) by finite nuclear density effects associated to a
renormalization of the pion decay constant, and complementarily (c) by
extending our calculation of the scalar-isoscalar channel to account for finite
nuclear density and temperature effects in a microscopic many-body
implementation of pion dynamics. Our results are discussed in connection with
several phenomenological aspects relevant for nuclear matter and Heavy-Ion
Collision experiments, such as mass scaling vs broadening from dilepton
spectra and chiral restoration signals in the channel. We also
elaborate on the molecular nature of resonances.Comment: 14 pages, 14 figures. Contribution to Hard Probes 2008, Illa de A
Toxa, Spain, June 8th-14th 200
Improving Strategies via SMT Solving
We consider the problem of computing numerical invariants of programs by
abstract interpretation. Our method eschews two traditional sources of
imprecision: (i) the use of widening operators for enforcing convergence within
a finite number of iterations (ii) the use of merge operations (often, convex
hulls) at the merge points of the control flow graph. It instead computes the
least inductive invariant expressible in the domain at a restricted set of
program points, and analyzes the rest of the code en bloc. We emphasize that we
compute this inductive invariant precisely. For that we extend the strategy
improvement algorithm of [Gawlitza and Seidl, 2007]. If we applied their method
directly, we would have to solve an exponentially sized system of abstract
semantic equations, resulting in memory exhaustion. Instead, we keep the system
implicit and discover strategy improvements using SAT modulo real linear
arithmetic (SMT). For evaluating strategies we use linear programming. Our
algorithm has low polynomial space complexity and performs for contrived
examples in the worst case exponentially many strategy improvement steps; this
is unsurprising, since we show that the associated abstract reachability
problem is Pi-p-2-complete
The SU(2) and SU(3) chiral phase transitions within Chiral Perturbation Theory
The SU(2) and SU(3) chiral phase transitions in a hot gas made of pions,
kaons and etas are studied within the framework of Chiral Perturbation Theory.
By using the meson meson scattering phase shifts in a second order virial
expansion, we are able to describe the temperature dependence of the quark
condensates. We have estimated the critical temperatures where the different
condensates melt. In particular, the SU(3) formalism yields a lower critical
temperature for the non-strange condensates than within SU(2), and also
suggests that the strange condensate may melt at a somewhat higher temperature,
due to the different strange and non-strange quark masses.Comment: 4 pages, two figures. Final version to appear in Phys Rev D. Complete
model independent calculation. Unitarized ChPt only used to check
extrapolation at high T. References added and numerical bug correcte
Maximally-localized Wannier functions for entangled energy bands
We present a method for obtaining well-localized Wannier-like functions (WFs)
for energy bands that are attached to or mixed with other bands. The present
scheme removes the limitation of the usual maximally-localized WFs method (N.
Marzari and D. Vanderbilt, Phys. Rev. B 56, 12847 (1997)) that the bands of
interest should form an isolated group, separated by gaps from higher and lower
bands everywhere in the Brillouin zone. An energy window encompassing N bands
of interest is specified by the user, and the algorithm then proceeds to
disentangle these from the remaining bands inside the window by filtering out
an optimally connected N-dimensional subspace. This is achieved by minimizing a
functional that measures the subspace dispersion across the Brillouin zone. The
maximally-localized WFs for the optimal subspace are then obtained via the
algorithm of Marzari and Vanderbilt. The method, which functions as a
postprocessing step using the output of conventional electronic-structure
codes, is applied to the s and d bands of copper, and to the valence and
low-lying conduction bands of silicon. For the low-lying nearly-free-electron
bands of copper we find WFs which are centered at the tetrahedral interstitial
sites, suggesting an alternative tight-binding parametrization.Comment: 13 pages, with 9 postscript figures embedded. Uses REVTEX and epsf
macro
A self-interaction corrected pseudopotential scheme for magnetic and strongly-correlated systems
Local-spin-density functional calculations may be affected by severe errors
when applied to the study of magnetic and strongly-correlated materials. Some
of these faults can be traced back to the presence of the spurious
self-interaction in the density functional. Since the application of a fully
self-consistent self-interaction correction is highly demanding even for
moderately large systems, we pursue a strategy of approximating the
self-interaction corrected potential with a non-local, pseudopotential-like
projector, first generated within the isolated atom and then updated during the
self-consistent cycle in the crystal. This scheme, whose implementation is
totally uncomplicated and particularly suited for the pseudopotental formalism,
dramatically improves the LSDA results for a variety of compounds with a
minimal increase of computing cost.Comment: 18 pages, 14 figure
- …