6,944 research outputs found

    Search for nearby stars among proper motion stars selected by optical-to-infrared photometry. I. Discovery of LHS 2090 at spectroscopic distance of d=6pc

    Get PDF
    We present the discovery of a previously unknown very nearby star - LHS 2090 at a distance of only d=6 pc. In order to find nearby (i.e. d < 25 pc) red dwarfs, we re-identified high proper motion stars (μ>\mu > 0.18 arcsec/yr) from the NLTT catalogue (Luyten \cite{luyten7980}) in optical Digitized Sky Survey data for two different epochs and in the 2MASS data base. Only proper motion stars with large RKsR-K_s colour index and with relatively bright infrared magnitudes (Ks<10K_s<10) were selected for follow-up spectroscopy. The low-resolution spectrum of LHS 2090 and its large proper motion (0.79 arcsec/yr) classify this star as an M6.5 dwarf. The resulting spectroscopic distance estimate from comparing the infrared JHKsJHK_s magnitudes of LHS 2090 with absolute magnitudes of M6.5 dwarfs is 6.0±1.16.0\pm1.1 pc assuming an uncertainty in absolute magnitude of ±\pm0.4 mag.Comment: 3 pages, 1 figure, accepted for publication in Astronomy and Astrophysics Letter

    Search for nearby stars among proper motion stars selected by optical-to-infrared photometry. II. Two late M dwarfs within 10 pc

    Get PDF
    We have identified two late M dwarfs within 10 parsecs of the Sun, by cross-correlating the Luyten NLTT catalogue of stars with proper motions larger than 0.18 arcsec/yr, with objects lacking optical identification in the 2MASS data base. The 2MASS photometry was then combined with improved optical photometry obtained from the SuperCOSMOS Sky Surveys. The two objects (LP775-31 and LP655-48) have extremely red optical-to-infrared colours ((R-K)~7) and very bright infrared magnitudes (K_s<10): follow-up optical spectroscopy with the ESO 3.6-m telescope gave spectral types of M8.0 and M7.5 dwarfs, respectively. Comparison of their near-infrared magnitudes with the absolute magnitudes of known M8 and M7.5 dwarfs with measured trigonometric parallaxes yields spectroscopic distance estimates of 6.4+/-1.4 parsecs and 8.0+/-1.6 parsecs for LP775-31 and LP655-48, respectively. In contrast, Cruz & Reid (2002) recently determined spectral types of M6 for both objects, and commensurately larger distances of 11.3+/-1.3 parsecs and 15.3+/-2.6 parsecs. LP655-48 is also a bright X-ray source (1RXS J044022.8-053020). With only a few late M dwarfs previously known within 10 parsecs, these two objects represent an important addition to the census of the Solar neighbourhood.Comment: Astronomy & Astrophysics (Letters), in press; 5 pages, 1 figure, uses aa.cls version 5.

    SSSPM J1444-2019: an extremely high proper motion, ultracool subdwarf

    Full text link
    We present the discovery of a new extreme high proper motion object (3.5 arcsec/year) which we classify as an ultracool subdwarf with [M/H] = -0.5. It has a formal spectral type of sdM9 but also shows L-type features: while the VO bands are completely absent, it exhibits extremely strong TiO absorption in its optical spectrum. With a radial velocity of about -160 km/s and a rough distance estimate of 16--24 pc, it is likely one of the nearest halo members crossing the Solar neighbourhood with a heliocentric space velocity of (U,V,W)=(-244,-256,-100)+/-(32,77,6) km/s.Comment: 4 pages, 4 figures (Fig.1a-d available as jpg files), accepted for publication in Astronomy & Astrophysics Letter

    New High Proper Motion Stars from the Digitized Sky Survey. II. Northern Stars with 0.5<mu<2.0 arcsec/yr at High Galactic Latitudes

    Full text link
    In a continuation of our systematic search for high proper motion stars in the Digitized Sky Survey, we have completed the analysis of northern sky fields at galactic latitudes above 25 degrees. With the help of our SUPERBLINK software, a powerful automated blink comparator developed by us, we have identified 1146 stars in the magnitude range 8<r<20 with proper motions 0.500<mu<2.000 arcsec/yr. These include 1080 stars previously listed in Luyten's proper motion catalogs (LHS, NLTT), 9 stars not previously listed in the Luyten catalogs but reported elsewhere in the literature (including 1 previously reported by our team), and 57 new objects reported here for the first time. This paper includes a list of positions, proper motions, magnitudes, and finder charts for all the new high proper motion stars. Combined with our previous study of low galactic latitude fields (see Paper I), our survey now covers over 98% of the northern sky. We conclude that the Luyten catalogs were 90% complete in the northern sky for stars with 0.5<mu<2.0 arcsec/yr down to magnitude r=19. We discuss the incompleteness of the old Luyten proper motion survey, and estimate completeness limits for our new survey.Comment: To appear in The Astronomical Journa

    Spectroscopic classification of red high proper motion objects in the Southern Sky

    Full text link
    We present the results of spectroscopic follow-up observations for a sample of 71 red objects with high proper motions in the range 0.08-1.14 arcsec/yr as detected using APM and SSS measurements of multi-epoch photographic Schmidt plates. Red objects were selected by combining the photographic BjRI magnitudes with 2MASS near-infrared JHKs magnitudes. Some 50 of the 71 spectroscopically classified objects turn out to be late-type (>M6) dwarfs and in more detail, the sample includes 35 ultracool dwarfs with spectral types between M8 and L2, some previously reported, as well as five M-type subdwarfs, including a cool esdM6 object, SSSPM J0500-5406. Distance estimates based on the spectral types and 2MASS J magnitudes place almost all of the late-type (>M6) dwarfs within 50 pc, with 25 objects located inside the 25 pc limit of the catalogue of nearby stars. Most of the early-type M dwarfs are located at larger distances of 100-200 pc, suggesting halo kinematics for some of them. All objects with Halpha equivalent widths larger than 10 Angstroms have relatively small tangential velocities (<50 km/s). Finally, some late-type but blue objects are candidate binaries.Comment: accepted on 06 June 2005 for publication in A&A, 22 pages, 14 figures, 7 table

    A new wide pair of cool white dwarfs in the Solar neighbourhood

    Get PDF
    We report the discovery of a wide pair (93 arcsec angular separation) of extremely cool (Teff<4000T_{eff}<4000 K) white dwarfs with a very large common proper motion (1.9\sim1.9 arcsec/yr). The objects were discovered in a high proper motion survey in the poorly investigated southern sky region with δ<60\delta<-60^{\circ} using SuperCOSMOS Sky Survey (SSS) data. Both objects, SSSPM J2231-7514 and SSSPM J2231-7515, show featureless optical spectra. Fits of black-body models to the spectra yield effective temperatures of 3810 K and 3600 K, respectively for the bright (V=16.60) and faint (V=16.87) component. Both degenerates are much brighter than other recent discoveries of cool white dwarfs with comparable effective temperatures and/or BJRB_J-R colours. Therefore, they should be relatively nearby objects. The comparison with other cool white dwarfs and a photometric distance determination yield distance estimates between 9 pc and 14 pc. The latter seems to be more realistic, since the good agreement of the proper motion of both components within the errors of about 8 mas/yr and the angular separation between the two stars support a distance of about 15 pc with relatively small masses of the components. With smaller distance we should be able to measure a differential proper motion due to orbital motion if the orbital plane is not strongly inclined and the present orbital velocity vector is not close to the line of sight. The space velocity based on that distance and assumptions on radial velocity makes the new pair of extremely cool white dwarfs some of the probably oldest members of the Galactic disk population, although the possibility that these objects are part of a Galactic halo dark matter component can also not yet be ruled out.Comment: 9 pages (with emulateapj5.sty), 3 figures, accepted for publication in The Astrophysical Journa

    Global survey of star clusters in the Milky Way II. The catalogue of basic parameters

    Full text link
    Although they are the main constituents of the Galactic disk population, for half of the open clusters in the Milky Way reported in the literature nothing is known except the raw position and an approximate size. The main goal of this study is to determine a full set of uniform spatial, structural, kinematic, and astrophysical parameters for as many known open clusters as possible. On the basis of stellar data from PPMXL and 2MASS, we used a dedicated data-processing pipeline to determine kinematic and photometric membership probabilities for stars in a cluster region. For an input list of 3784 targets from the literature, we confirm that 3006 are real objects, the vast majority of them are open clusters, but associations and globular clusters are also present. For each confirmed object we determined the exact position of the cluster centre, the apparent size, proper motion, distance, colour excess, and age. For about 1500 clusters, these basic astrophysical parameters have been determined for the first time. For the bulk of the clusters we also derived the tidal radius. We estimated additionally average radial velocities for more than 30% of the confirmed clusters. The present sample (called MWSC) reaches both the central parts of the Milky Way and its outer regions. It is almost complete up to 1.8 kpc from the Sun and also covers neighbouring spiral arms. However, for a small subset of the oldest open clusters (logt9\log t \gtrsim 9) we found some evidence of incompleteness within about 1 kpc from the Sun.Comment: 8 pages, 5 figures, accepted for publication in Astronomy and Astrophysic

    Global survey of star clusters in the Milky Way IV. 63 new open clusters detected by proper motions

    Full text link
    AIMS: In their 1st extension to the Milky Way Star Clusters (MWSC) survey, Schmeja et al. applied photometric filters to the 2MASS to find new cluster candidates that were subsequently confirmed or rejected by the MWSC pipeline. To further extend the MWSC census, we aimed at discovering new clusters by conducting an almost global search in proper motion catalogues as a starting point. METHODS: We first selected high-quality samples from the PPMXL and UCAC4 for comparison and verification of the proper motions. For 441 circular proper motion bins (radius 15 mas/yr) within ±\pm50 mas/yr, the sky outside a thin Galactic plane zone (b|b|<<5^{\circ}) was binned in small areas ('sky pixels') of 0.25×\times0.25 deg2^2. Sky pixels with enhanced numbers of stars with a certain common proper motion in both catalogues were considered as cluster candidates. After visual inspection of the sky images, we built an automated procedure that combined these representations of the sky for neighbouring proper motion subsamples after a background correction. RESULTS: About half of our 692 candidates overlapped with known clusters (46 globular and 68 open clusters in the Galaxy, about 150 known clusters of galaxies) or the Magellanic Clouds. About 10% of our candidates turned out to be 63 new open clusters confirmed by the MWSC pipeline. They occupy predominantly the two inner Galactic quadrants and have apparent sizes and numbers of high-probable members slightly larger than those of the typically small MWSC clusters, whereas their other parameters (ages, distances, tidal radii) fall in the typical ranges. As our search aimed at finding compact clusters, we did not find new very nearby (extended) clusters. (abridged)Comment: 14 pages, 14 figures, accepted for publication in Astronomy and Astrophysic

    A 22 Degree Tidal Tail for Palomar 5

    Full text link
    Using Data Release 4 of the Sloan Digital Sky Survey, we have applied an optimal contrast, matched filter technique to trace the trailing tidal tail of the globular cluster Palomar 5 to a distance of 18.5 degrees from the center of the cluster. This more than doubles the total known length of the tail to some 22 degrees on the sky. Based on a simple model of the Galaxy, we find that the stream's orientation on the sky is consistent at the 1.7 sigma level with existing proper motion measurements. We find that a spherical Galactic halo is adequate to model the stream over its currently known length, and we are able to place new constraints on the current space motion of the cluster.Comment: 10 pages, 3 figures, accepted for publication in ApJ Letter
    corecore