72 research outputs found

    The cross helicity at the solar surface by simulations and observations

    Full text link
    The quasilinear mean-field theory for driven MHD turbulence leads to the result that the observed cross helicity may directly yield the magnetic eddy diffusivity \eta_{T} of the quiet Sun. In order to model the cross helicity at the solar surface, magnetoconvection under the presence of a vertical large-scale magnetic field is simulated with the nonlinear MHD code NIRVANA. The very robust result of the calculations is that \simeq 2 independent of the applied magnetic field amplitude. The correlation coefficient for the cross helicity is about 10%. Of similar robustness is the finding that the rms value of the magnetic perturbations exceeds the mean-field amplitude (only) by a factor of five. The characteristic helicity speed u_{\eta} as the ratio of the eddy diffusivity and the density scale height for an isothermal sound velocity of 6.6 km/s proves to be 1 km/s for weak fields. This value well coincides with empirical results obtained from the data of the HINODE satellite and the Swedish 1-m Solar Telescope (SST) providing the cross helicity component . Both simulations and observations thus lead to a numerical value of \eta_{T} \simeq 10^12 cm^2 /s as characteristic for the surface of the quiet Sun.Comment: 6 pages, 6 figure

    Magnetic fields in O-type stars measured with FORS1 at the VLT

    Full text link
    The presence of magnetic fields in O-type stars has been suspected for a long time. The discovery of such fields would explain a wide range of well documented enigmatic phenomena in massive stars, in particular cyclical wind variability, Halpha emission variations, chemical peculiarity, narrow X-ray emission lines and non-thermal radio/X-ray emission. Here we present the results of our studies of magnetic fields in O-type stars, carried out over the last years.Comment: 2 pages, 1 figure, to appear in Proceedings of IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Magnetic fields and UV-line variability in β\beta Cephei

    Full text link
    We present results of numerical simulations of wind variability in the magnetic B1 IVe star β\beta Cephei. 2D-MHD simulations are used to determine the structure of the wind. From these wind models we calculate line profiles for different aspect angles to simulate rotation. The results are compared with the observed UV wind line profiles.Comment: 3 pages, 2 figures, to appear in the proceedings of the Active OB-Stars conference, Sapporo, Japa

    Search for the magnetic field of the O7.5 III star xi Persei

    Full text link
    Cyclical wind variability is an ubiquitous but as yet unexplained feature among OB stars. The O7.5 III(n)((f)) star xi Persei is the brightest representative of this class on the Northern hemisphere. As its prominent cyclical wind properties vary on a rotational time scale (2 or 4 days) the star has been already for a long time a serious magnetic candidate. As the cause of this enigmatic behavior non-radial pulsations and/or a surface magnetic field are suggested. We present a preliminary report on our attempts to detect a magnetic field in this star with high-resolution measurements obtained with the spectropolarimeter Narval at TBL, France during 2 observing runs of 5 nights in 2006 and 5 nights in 2007. Only upper limits could be obtained, even with the longest possible exposure times. If the star hosts a magnetic field, its surface strength should be less than about 300 G. This would still be enough to disturb the stellar wind significantly. From our new data it seems that the amplitude of the known non-radial pulsations has changed within less than a year, which needs further investigation.Comment: 2 pages, 6 figures, contributed poster at IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    On the Hα\alpha emission from the β\beta Cephei system

    Get PDF
    Be stars, which are characterised by intermittent emission in their hydrogen lines, are known to be fast rotators. This fast rotation is a requirement for the formation of a Keplerian disk, which in turn gives rise to the emission. However, the pulsating, magnetic B1IV star β\beta Cephei is a very slow rotator that still shows Hα\alpha emission episodes like in other Be stars, contradicting current theories. We investigate the hypothesis that the Hα\alpha emission stems from the spectroscopically unresolved companion of β\beta Cep. Spectra of the two unresolved components have been separated in the 6350-6850\AA range with spectro-astrometric techniques, using 11 longslit spectra obtained with ALFOSC at the Nordic Optical Telescope, La Palma. We find that the Hα\alpha emission is not related to the primary in β\beta Cep, but is due to its 3.4 magnitudes fainter companion. This companion has been resolved by speckle techniques, but it remains unresolved by traditional spectroscopy. The emission extends from about -400 to +400 km s1^{-1}. The companion star in its 90-year orbit is likely to be a classical Be star with a spectral type around B6-8. By identifying its Be-star companion as the origin of the Hα\alpha emission behaviour, the enigma behind the Be status of the slow rotator β\beta Cep has been resolved.Comment: 4 pages, 3 figures. Accepted by A&A Letter

    A study of the magnetic field in the photospheric and circumstellar components of Herbig Ae stars

    Get PDF
    We intend to investigate separately the photospheric and circumstellar (CS) magnetic field components in seven Herbig Ae stars. The study is based on low-resolution (R ~ 2000 and 4000) spectropolarimetric data collected from 2003 to 2005 at the Very Large Telescope (ESO, Chile) with the multi-mode instrument FORS1. We show that the spectropolarimetric results strongly depend on the level of CS contribution to the stellar spectra. We have improved the determination accuracy of magnetic fields up to the 7 sigma level in the two Herbig Ae stars HD139614 and HD144432, observed in 2005 when these objects were at a low level state of their CS activity. We have established that at a higher level state of CS activity the polarisation signatures are related mainly to the CS matter. The presence of CS polarisation signatures formed in the stellar wind supports the assumption that the magnetic centrifuge is a principal mechanism of wind acceleration. We conclude that the most effective way to investigate the magnetism of Herbig Ae stars is to monitor their spectropolarimetric behaviour at different states of CS activity. Obviously, higher resolution spectropolarimetric observations would extend the sample of spectral lines to be used for the measurements of magnetic fields at different levels in the stellar atmosphere and CS envelope. Such observations will give a more complete insight into the magnetic topology in Herbig Ae stars.Comment: 9 pages, 9 figures, 2 tables, accepted for publication in A&

    The magnetic field of the B3V star 16 Pegasi

    Full text link
    The Slowly Pulsating B3V star 16 Pegasi was discovered by Hubrig (2006) to be magnetic, based on low-resolution spectropolarimetric observations with FORS1 at the VLT. We have confirmed the presence of a magnetic field with new measurements with the spectropolarimeters Narval at TBL, France and Espadons at CFHT, Hawaii during 2007. The most likely period is about 1.44 d for the modulation of the field, but this could not be firmly established with the available data set. No variability has been found in the UV stellar wind lines. Although the star was reported once to show H alpha in emission, there exists at present no confirmation that the star is a Be star.Comment: 2 pages, 4 figures, contrubuted poster at IAU Symposium 259 "Cosmic Magnetic Fields: from Planets, to Stars and Galaxies", Tenerife, Spain, November 3-7, 200

    Radio observations of candidate magnetic O stars

    Full text link
    Context: Some O stars are suspected to have to have (weak) magnetic fields because of the observed cyclical variability in their UV wind-lines. However, direct detections of these magnetic fields using optical spectropolarimetry have proven to be very difficult. Aims: Non-thermal radio emission in these objects would most likely be due to synchrotron radiation. As a magnetic field is required for the production of synchrotron radiation, this would be strong evidence for the presence of a magnetic field. Such non-thermal emission has already been observed from the strongly magnetic Ap/Bp stars. Methods: We have performed 6 & 21 cm observations using the WSRT and use these, in combination with archival VLA data at 3.6 cm and results from the literature, to study the radio emission of 5 selected candidate magnetic O stars. Results: Out of our five targets, we have detected three: ξ\xi Per, which shows a non-thermal radio spectrum, and α\alpha Cam and λ\lambda Cep, which show no evidence of a non-thermal spectrum. In general we find that the observed free-free (thermal) flux of the stellar wind is lower than expected. This is in agreement with recent findings that the mass-loss rates from O stars as derived from the Hα\alpha line are overestimated because of clumping in the inner part of the stellar wind.Comment: Published in A&
    corecore