60,087 research outputs found
Terrestrial planet formation in low eccentricity warm-Jupiter systems
We examine the effect of giant planet migration on the formation of inner
terrestrial planet systems. We consider situations in which the giant planet
halts migration at semi-major axes in the range 0.13 - 1.7 AU due to gas disk
dispersal. An N-body code is employed that is linked to a viscous gas disk
algorithm capable of simulating: gas loss via accretion onto the central star
and photoevaporation; gap formation by the giant planet; type II migration of
the giant; optional type I migration of protoplanets; gas drag on
planetesimals. We find that most of the inner system planetary building blocks
survive the passage of the giant planet, either by being shepherded inward or
scattered into exterior orbits. Systems of one or more hot-Earths are predicted
to form and remain interior to the giant planet, especially if type II
migration has been limited, or where type I migration has affected
protoplanetary dynamics. Habitable planets in low eccentricity warm-Jupiter
systems appear possible if the giant planet makes a limited incursion into the
outer regions of the habitable zone (HZ), or traverses its entire width and
ceases migrating at a radial distance of less than half that of the HZ's inner
edge. We conclude that Type II migration does not prevent terrestrial planet
formation.Comment: Accepted for publication in A&A; 18 pages, 12 figures, 2 table
Crumpling transition of the triangular lattice without open edges: effect of a modified folding rule
Folding of the triangular lattice in a discrete three-dimensional space is
investigated by means of the transfer-matrix method. This model was introduced
by Bowick and co-workers as a discretized version of the polymerized membrane
in thermal equilibrium. The folding rule (constraint) is incompatible with the
periodic-boundary condition, and the simulation has been made under the
open-boundary condition. In this paper, we propose a modified constraint, which
is compatible with the periodic-boundary condition; technically, the
restoration of translational invariance leads to a substantial reduction of the
transfer-matrix size. Treating the cluster sizes L \le 7, we analyze the
singularities of the crumpling transitions for a wide range of the bending
rigidity K. We observe a series of the crumpling transitions at K=0.206(2),
-0.32(1), and -0.76(10). At each transition point, we estimate the latent heat
as Q=0.356(30), 0.08(3), and 0.05(5), respectively
The stress-corrosion behavior of Al-Li-Cu alloys: A comparison of test methods
Two powder metallurgy processed (Al-Li-Cu) alloys with and without Mg addition were studied in aqueous 3.5% NaCl solution during the alternate immersion testing of tuning fork specimens, slow crack growth tests using fracture mechanics specimens, and the slow strain rate testing of straining electrode specimens. Scanning electron microscopy and optical metallography were used to demonstrate the character of the interaction between the Al-Li-Cu alloys and the selected environment. Both alloys are susceptible to SC in an aqueous 3.5% NaCl solution under the right electrochemical and microstructural conditions. Each test method yields important information on the character of the SC behavior. Under all conditions investigated, second phase particles strung out in rows along the extrusion direction in the alloys were rapidly attacked, and played principal role in the SC process. With time, larger pits developed from these rows of smaller pits and under certain electrochemical conditions surface cracks initiated from the larger pits and contributed directly to the fracture process. Evidence to support slow crack growth was observed in both the slow strain rate tests and the sustained immersion tests of precracked fracture mechanics specimens. The possible role of H2 in the stress corrosion cracking process is suggested
Stress-corrosion behavior of aluminum-lithium alloys in aqueous environments
The stress corrosion susceptibility of two powder metallurgy (P/M) alloys, Al-Li-Cu and Al-Li-Cu-Mg two mechanically attrited (M/A) alloys, Al-Li-Cu and Al-Li-Mg; and two wrought, ingot alloys, X-2020 and AA7475, are compared. Time-dependent fracture in an aqueous sodium chloride environment under alternate immersion condition was found to vary significantly between alloys. The stress corrosion behavior of the two powder metallurgy processed alloys was studied in detail under conditions of crack initiation, static crack growth, and fatigue crack growth. A variety of stress corrosion tests were performed including smooth surface, time-to-failure tests; potentiostatic tests on smooth surfaces exposed to constant applied strain rates; and fracture mechanics-type tests under static and cyclic loads. Both alloys show surface pitting and subsequent intergranular corrosion. Pitting is more severe in the magnesium-bearing alloy and is associated with stringer particles strung along the extrusion direction as a result of P/M processing
Folding of the triangular lattice in a discrete three-dimensional space: Crumpling transitions in the negative-bending-rigidity regime
Folding of the triangular lattice in a discrete three-dimensional space is
studied numerically. Such ``discrete folding'' was introduced by Bowick and
co-workers as a simplified version of the polymerized membrane in thermal
equilibrium. According to their cluster-variation method (CVM) analysis, there
appear various types of phases as the bending rigidity K changes in the range
-infty < K < infty. In this paper, we investigate the K<0 regime, for which the
CVM analysis with the single-hexagon-cluster approximation predicts two types
of (crumpling) transitions of both continuous and discontinuous characters. We
diagonalized the transfer matrix for the strip widths up to L=26 with the aid
of the density-matrix renormalization group. Thereby, we found that
discontinuous transitions occur successively at K=-0.76(1) and -0.32(1).
Actually, these transitions are accompanied with distinct hysteresis effects.
On the contrary, the latent-heat releases are suppressed considerably as
Q=0.03(2) and 0.04(2) for respective transitions. These results indicate that
the singularity of crumpling transition can turn into a weak-first-order type
by appreciating the fluctuations beyond a meanfield level
Use of the geometric mean as a statistic for the scale of the coupled Gaussian distributions
The geometric mean is shown to be an appropriate statistic for the scale of a
heavy-tailed coupled Gaussian distribution or equivalently the Student's t
distribution. The coupled Gaussian is a member of a family of distributions
parameterized by the nonlinear statistical coupling which is the reciprocal of
the degree of freedom and is proportional to fluctuations in the inverse scale
of the Gaussian. Existing estimators of the scale of the coupled Gaussian have
relied on estimates of the full distribution, and they suffer from problems
related to outliers in heavy-tailed distributions. In this paper, the scale of
a coupled Gaussian is proven to be equal to the product of the generalized mean
and the square root of the coupling. From our numerical computations of the
scales of coupled Gaussians using the generalized mean of random samples, it is
indicated that only samples from a Cauchy distribution (with coupling parameter
one) form an unbiased estimate with diminishing variance for large samples.
Nevertheless, we also prove that the scale is a function of the geometric mean,
the coupling term and a harmonic number. Numerical experiments show that this
estimator is unbiased with diminishing variance for large samples for a broad
range of coupling values.Comment: 17 pages, 5 figure
Self-interaction in Green's-function theory of the hydrogen atom
Atomic hydrogen provides a unique test case for computational electronic structure methods, since its electronic excitation energies are known analytically. With only one electron, hydrogen contains no electronic correlation and is therefore particularly susceptible to spurious self-interaction errors introduced by certain computational methods. In this paper we focus on many-body perturbation-theory (MBPT) in Hedin's GW approximation. While the Hartree-Fock and the exact MBPT self-energy are free of self-interaction, the correlation part of the GW self-energy does not have this property. Here we use atomic hydrogen as a benchmark system for GW and show that the self-interaction part of the GW self-energy, while non-zero, is small. The effect of calculating the GW self-energy from exact wavefunctions and eigenvalues, as distinct from those from the local-density approximation, is also illuminating
Thermodynamics of Twisted DNA with Solvent Interaction
The imaginary time path integral formalism is applied to a nonlinear
Hamiltonian for a short fragment of heterogeneous DNA with a stabilizing
solvent interaction term. Torsional effects are modeled by a twist angle
between neighboring base pairs stacked along the molecule backbone. The base
pair displacements are described by an ensemble of temperature dependent paths
thus incorporating those fluctuational effects which shape the multisteps
thermal denaturation. By summing over base pair paths, a
large number of double helix configurations is taken into account consistently
with the physical requirements of the model potential. The partition function
is computed as a function of the twist. It is found that the equilibrium twist
angle, peculiar of B-DNA at room temperature, yields the stablest helicoidal
geometry against thermal disruption of the base pair hydrogen bonds. This
result is corroborated by the computation of thermodynamical properties such as
fractions of open base pairs and specific heat.Comment: The Journal of Chemical Physics (2011) in pres
- …