10,682 research outputs found

    Effect of non-magnetic impurities on the magnetic states of anatase TiO2_2

    Full text link
    The electronic and magnetic properties of TiO2_2, TiO1.75_{1.75}, TiO1.75_{1.75}N0.25_{0.25}, and TiO1.75_{1.75}F0.25_{0.25} compounds have been studied by using \emph{ab initio} electronic structure calculations. TiO2_2 is found to evolve from a wide-band-gap semiconductor to a narrow-band-gap semiconductor to a half-metallic state and finally to a metallic state with oxygen vacancy, N-doping and F-doping, respectively. Present work clearly shows the robust magnetic ground state for N- and F-doped TiO2_2. The N-doping gives rise to magnetic moment of \sim0.4 μB\mu_B at N-site and \sim0.1 μB\mu_B each at two neighboring O-sites, whereas F-doping creates a magnetic moment of \sim0.3 μB\mu_B at the nearest Ti atom. Here we also discuss the possible cause of the observed magnetic states in terms of the spatial electronic charge distribution of Ti, N and F atoms responsible for bond formation.Comment: 11 pages, 4 figures To appear J. Phys.: Condens. Matte

    Spin-lattice coupling mediated giant magnetodielectricity across the spin reorientation in Ca2FeCoO5

    Full text link
    The structural, phonon, magnetic, dielectric, and magneto dielectric responses of the pure bulk Brownmillerite compound Ca2FeCoO5 are reported. This compound showed giant magneto dielectric response (10%-24%) induced by strong spin-lattice coupling across its spin reorientation transition (150-250 K). The role of two Debye temperatures pertaining to differently coordinated sites in the dielectric relaxations is established. The positive giant magneto-dielectricity is shown to be a direct consequence of the modulations in the lattice degrees of freedom through applied external field across the spin reorientation transition. Our study illustrates novel control of magneto-dielectricity by tuning the spin reorientation transition in a material that possess strong spin lattice coupling.Comment: 7 pages, 12 figure

    Local ionospheric electrodynamics associated with neutral wind fields at low latitudes: Kelvin-Helmholtz billows

    No full text
    International audienceThe Gadanki radar observation of plasma irregularities bearing the signature of Kelvin-Helmholtz billows above 100 km altitude raises the question of the electrodynamical mechanism that would allow the structures to drift with the neutral wind. We show that for locally varying neutral wind fields with the right geometry at night, multiple Hall effects in the electron gas lead to a situation where ions, electrons, and neutrals move together along the component of the wind that changes most rapidly in space. The species must not move together along all directions, however. If this were the case the plasma would be stable and a radar would be unable to observe the wind field. We discuss the stability of the plasma itself for Es layers affected by the Kelvin-Helmholtz wind field and show that a variety of factors have to be taken into account beyond the study of the zeroth order mechanism

    Polarization Sensitive Optical Coherence Tomography for Blood Glucose Monitoring in Human Subjects

    Full text link
    A device based on Polarization sensitive optical coherence tomography is developed to monitor blood glucose levels in human subjects. The device was initially tested with tissue phantom. The measurements with human subjects for various glucose concentration levels are found to be linearly dependent on the degree of circular polarization obtainable from the PS-OCT.Comment: 12 pages, 5 figure