1,295 research outputs found

    Simple sufficient conditions for the generalized covariant entropy bound

    Full text link
    The generalized covariant entropy bound is the conjecture that the entropy of the matter present on any non-expanding null hypersurface L will not exceed the difference between the areas, in Planck units, of the initial and final spatial 2-surfaces bounding L. The generalized Bekenstein bound is a special case which states that the entropy of a weakly gravitating isolated matter system will not exceed the product of its mass and its width. Here we show that both bounds can be derived directly from the following phenomenological assumptions: that entropy can be computed by integrating an entropy current which vanishes on the initial boundary and whose gradient is bounded by the energy density. Though we note that any local description of entropy has intrinsic limitations, we argue that our assumptions apply in a wide regime. We closely follow the framework of an earlier derivation, but our assumptions take a simpler form, making their validity more transparent in some examples.Comment: 7 pages, revte

    Light-sheets and Bekenstein's bound

    Get PDF
    From the covariant bound on the entropy of partial light-sheets, we derive a version of Bekenstein's bound: S/M \leq pi x/hbar, where S, M, and x are the entropy, total mass, and width of any isolated, weakly gravitating system. Because x can be measured along any spatial direction, the bound becomes unexpectedly tight in thin systems. Our result completes the identification of older entropy bounds as special cases of the covariant bound. Thus, light-sheets exhibit a connection between information and geometry far more general, but in no respect weaker, than that initially revealed by black hole thermodynamics.Comment: 5 pages, 1 figure; v2: published version, improved discussion of weak gravity condition, final paragraph adde

    The Holographic Principle for General Backgrounds

    Get PDF
    We aim to establish the holographic principle as a universal law, rather than a property only of static systems and special space-times. Our covariant formalism yields an upper bound on entropy which applies to both open and closed surfaces, independently of shape or location. It reduces to the Bekenstein bound whenever the latter is expected to hold, but complements it with novel bounds when gravity dominates. In particular, it remains valid in closed FRW cosmologies and in the interior of black holes. We give an explicit construction for obtaining holographic screens in arbitrary space-times (which need not have a boundary). This may aid the search for non-perturbative definitions of quantum gravity in space-times other than AdS.Comment: 15 pages, 4 figures. Based on a talk given at Strings '99. Includes a reply to recent criticism. For more details, examples, and references, see hep-th/9905177 and hep-th/990602

    Flat space physics from holography

    Full text link
    We point out that aspects of quantum mechanics can be derived from the holographic principle, using only a perturbative limit of classical general relativity. In flat space, the covariant entropy bound reduces to the Bekenstein bound. The latter does not contain Newton's constant and cannot operate via gravitational backreaction. Instead, it is protected by - and in this sense, predicts - the Heisenberg uncertainty principle.Comment: 11 pages, 3 figures; v2: minor correction

    The nonlinear evolution of de Sitter space instabilities

    Full text link
    We investigate the quantum evolution of large black holes that nucleate spontaneously in de Sitter space. By numerical computation in the s-wave and one-loop approximations, we verify claims that such black holes can initially "anti-evaporate" instead of shrink. We show, however, that this is a transitory effect. It is followed by an evaporating phase, which we are able to trace until the black holes are small enough to be treated as Schwarzschild. Under generic perturbations, the nucleated geometry is shown to decay into a ring of de Sitter regions connected by evaporating black holes. This confirms that de Sitter space is globally unstable and fragments into disconnected daughter universes.Comment: 10 pages, 8 figures, to appear in PR

    Light Sheets and the Covariant Entropy Conjecture

    Get PDF
    We examine the holography bound suggested by Bousso in his covariant entropy conjecture, and argue that it is violated because his notion of light sheet is too generous. We suggest its replacement by a weaker bound.Comment: 5 pages, to appear in Classical and Quantum Gravit

    A covariant entropy bound conjecture on the dynamical horizon

    Full text link
    As a compelling pattern for the holographic principle, our covariant entropy bound conjecture is proposed for more general dynamical horizons. Then we apply our conjecture to őõ\LambdaCDM cosmological models, where we find it imposes a novel upper bound 10‚ąí9010^{-90} on the cosmological constant for our own universe by taking into account the dominant entropy contribution from super-massive black holes, which thus provides an alternative macroscopic perspective to understand the longstanding cosmological constant problem. As an intriguing implication of this conjecture, we also discuss the possible profound relation between the present cosmological constant, the origin of mass, and the anthropic principle.Comment: JHEP style, 9 pages, 1 figure, honorable mention award received from Gravity Research Foundation for 2008 Essay Competitio

    (Anti-)Evaporation of Schwarzschild-de Sitter Black Holes

    Full text link
    We study the quantum evolution of black holes immersed in a de Sitter background space. For black holes whose size is comparable to that of the cosmological horizon, this process differs significantly from the evaporation of asymptotically flat black holes. Our model includes the one-loop effective action in the s-wave and large N approximation. Black holes of the maximal mass are in equilibrium. Unexpectedly, we find that nearly maximal quantum Schwarzschild-de Sitter black holes anti-evaporate. However, there is a different perturbative mode that leads to evaporation. We show that this mode will always be excited when a pair of cosmological holes nucleates.Comment: 16 pages, LaTeX2e; submitted to Phys. Rev.

    A covariant entropy conjecture on cosmological dynamical horizon

    Full text link
    We here propose a covariant entropy conjecture on cosmological dynamical horizon. After the formulation of our conjecture, we test its validity in adiabatically expanding universes with open, flat and closed spatial geometry, where our conjecture can also be viewed as a cosmological version of the generalized second law of thermodynamics in some sense.Comment: JHEP style, 9 pages, 1 figure, typos corrected, accepted for publication in JHE

    Quantum Global Structure of de Sitter Space

    Get PDF
    I study the global structure of de Sitter space in the semi-classical and one-loop approximations to quantum gravity. The creation and evaporation of neutral black holes causes the fragmentation of de Sitter space into disconnected daughter universes. If the black holes are stabilized by a charge, I find that the decay leads to a necklace of de Sitter universes (`beads') joined by near-extremal black hole throats. For sufficient charge, more and more beads keep forming on the necklace, so that an unbounded number of universes will be produced. In any case, future infinity will not be connected. This may have implications for a holographic description of quantum gravity in de Sitter space.Comment: 37 pages, LaTeX2e, 10 figures. v2: references adde
    • ‚Ķ
    corecore