417 research outputs found

    Randomized Algorithms for the Loop Cutset Problem

    Full text link
    We show how to find a minimum weight loop cutset in a Bayesian network with high probability. Finding such a loop cutset is the first step in the method of conditioning for inference. Our randomized algorithm for finding a loop cutset outputs a minimum loop cutset after O(c 6^k kn) steps with probability at least 1 - (1 - 1/(6^k))^c6^k, where c > 1 is a constant specified by the user, k is the minimal size of a minimum weight loop cutset, and n is the number of vertices. We also show empirically that a variant of this algorithm often finds a loop cutset that is closer to the minimum weight loop cutset than the ones found by the best deterministic algorithms known

    Fast Structuring of Radio Networks for Multi-Message Communications

    Full text link
    We introduce collision free layerings as a powerful way to structure radio networks. These layerings can replace hard-to-compute BFS-trees in many contexts while having an efficient randomized distributed construction. We demonstrate their versatility by using them to provide near optimal distributed algorithms for several multi-message communication primitives. Designing efficient communication primitives for radio networks has a rich history that began 25 years ago when Bar-Yehuda et al. introduced fast randomized algorithms for broadcasting and for constructing BFS-trees. Their BFS-tree construction time was O(Dlog2n)O(D \log^2 n) rounds, where DD is the network diameter and nn is the number of nodes. Since then, the complexity of a broadcast has been resolved to be TBC=Θ(DlognD+log2n)T_{BC} = \Theta(D \log \frac{n}{D} + \log^2 n) rounds. On the other hand, BFS-trees have been used as a crucial building block for many communication primitives and their construction time remained a bottleneck for these primitives. We introduce collision free layerings that can be used in place of BFS-trees and we give a randomized construction of these layerings that runs in nearly broadcast time, that is, w.h.p. in TLay=O(DlognD+log2+ϵn)T_{Lay} = O(D \log \frac{n}{D} + \log^{2+\epsilon} n) rounds for any constant ϵ>0\epsilon>0. We then use these layerings to obtain: (1) A randomized algorithm for gathering kk messages running w.h.p. in O(TLay+k)O(T_{Lay} + k) rounds. (2) A randomized kk-message broadcast algorithm running w.h.p. in O(TLay+klogn)O(T_{Lay} + k \log n) rounds. These algorithms are optimal up to the small difference in the additive poly-logarithmic term between TBCT_{BC} and TLayT_{Lay}. Moreover, they imply the first optimal O(nlogn)O(n \log n) round randomized gossip algorithm

    Hitting Diamonds and Growing Cacti

    Full text link
    We consider the following NP-hard problem: in a weighted graph, find a minimum cost set of vertices whose removal leaves a graph in which no two cycles share an edge. We obtain a constant-factor approximation algorithm, based on the primal-dual method. Moreover, we show that the integrality gap of the natural LP relaxation of the problem is \Theta(\log n), where n denotes the number of vertices in the graph.Comment: v2: several minor changes

    How Unsplittable-Flow-Covering helps Scheduling with Job-Dependent Cost Functions

    Full text link
    Generalizing many well-known and natural scheduling problems, scheduling with job-specific cost functions has gained a lot of attention recently. In this setting, each job incurs a cost depending on its completion time, given by a private cost function, and one seeks to schedule the jobs to minimize the total sum of these costs. The framework captures many important scheduling objectives such as weighted flow time or weighted tardiness. Still, the general case as well as the mentioned special cases are far from being very well understood yet, even for only one machine. Aiming for better general understanding of this problem, in this paper we focus on the case of uniform job release dates on one machine for which the state of the art is a 4-approximation algorithm. This is true even for a special case that is equivalent to the covering version of the well-studied and prominent unsplittable flow on a path problem, which is interesting in its own right. For that covering problem, we present a quasi-polynomial time (1+ϵ)(1+\epsilon)-approximation algorithm that yields an (e+ϵ)(e+\epsilon)-approximation for the above scheduling problem. Moreover, for the latter we devise the best possible resource augmentation result regarding speed: a polynomial time algorithm which computes a solution with \emph{optimal }cost at 1+ϵ1+\epsilon speedup. Finally, we present an elegant QPTAS for the special case where the cost functions of the jobs fall into at most logn\log n many classes. This algorithm allows the jobs even to have up to logn\log n many distinct release dates.Comment: 2 pages, 1 figur

    Lower Bounds for Structuring Unreliable Radio Networks

    Full text link
    In this paper, we study lower bounds for randomized solutions to the maximal independent set (MIS) and connected dominating set (CDS) problems in the dual graph model of radio networks---a generalization of the standard graph-based model that now includes unreliable links controlled by an adversary. We begin by proving that a natural geographic constraint on the network topology is required to solve these problems efficiently (i.e., in time polylogarthmic in the network size). We then prove the importance of the assumption that nodes are provided advance knowledge of their reliable neighbors (i.e, neighbors connected by reliable links). Combined, these results answer an open question by proving that the efficient MIS and CDS algorithms from [Censor-Hillel, PODC 2011] are optimal with respect to their dual graph model assumptions. They also provide insight into what properties of an unreliable network enable efficient local computation.Comment: An extended abstract of this work appears in the 2014 proceedings of the International Symposium on Distributed Computing (DISC

    Broadcasting in Noisy Radio Networks

    Full text link
    The widely-studied radio network model [Chlamtac and Kutten, 1985] is a graph-based description that captures the inherent impact of collisions in wireless communication. In this model, the strong assumption is made that node vv receives a message from a neighbor if and only if exactly one of its neighbors broadcasts. We relax this assumption by introducing a new noisy radio network model in which random faults occur at senders or receivers. Specifically, for a constant noise parameter p[0,1)p \in [0,1), either every sender has probability pp of transmitting noise or every receiver of a single transmission in its neighborhood has probability pp of receiving noise. We first study single-message broadcast algorithms in noisy radio networks and show that the Decay algorithm [Bar-Yehuda et al., 1992] remains robust in the noisy model while the diameter-linear algorithm of Gasieniec et al., 2007 does not. We give a modified version of the algorithm of Gasieniec et al., 2007 that is robust to sender and receiver faults, and extend both this modified algorithm and the Decay algorithm to robust multi-message broadcast algorithms. We next investigate the extent to which (network) coding improves throughput in noisy radio networks. We address the previously perplexing result of Alon et al. 2014 that worst case coding throughput is no better than worst case routing throughput up to constants: we show that the worst case throughput performance of coding is, in fact, superior to that of routing -- by a Θ(log(n))\Theta(\log(n)) gap -- provided receiver faults are introduced. However, we show that any coding or routing scheme for the noiseless setting can be transformed to be robust to sender faults with only a constant throughput overhead. These transformations imply that the results of Alon et al., 2014 carry over to noisy radio networks with sender faults.Comment: Principles of Distributed Computing 201

    Emergence of hyperons in failed supernovae: trigger of the black hole formation

    Full text link
    We investigate the emergence of strange baryons in the dynamical collapse of a non-rotating massive star to a black hole by the neutrino-radiation hydrodynamical simulations in general relativity. By following the dynamical formation and collapse of nascent proto-neutron star from the gravitational collapse of a 40Msun star adopting a new hyperonic EOS table, we show that the hyperons do not appear at the core bounce but populate quickly at ~0.5-0.7 s after the bounce to trigger the re-collapse to a black hole. They start to show up off center owing to high temperatures and later prevail at center when the central density becomes high enough. The neutrino emission from the accreting proto-neutron star with the hyperonic EOS stops much earlier than the corresponding case with a nucleonic EOS while the average energies and luminosities are quite similar between them. These features of neutrino signal are a potential probe of the emergence of new degrees of freedom inside the black hole forming collapse.Comment: 11 pages, 3 figures, accepted for publication in ApJ

    Tight Bounds for MIS in Multichannel Radio Networks

    Full text link
    Daum et al. [PODC'13] presented an algorithm that computes a maximal independent set (MIS) within O(log2n/F+lognpolyloglogn)O(\log^2 n/F+\log n \mathrm{polyloglog} n) rounds in an nn-node multichannel radio network with FF communication channels. The paper uses a multichannel variant of the standard graph-based radio network model without collision detection and it assumes that the network graph is a polynomially bounded independence graph (BIG), a natural combinatorial generalization of well-known geographic families. The upper bound of that paper is known to be optimal up to a polyloglog factor. In this paper, we adapt algorithm and analysis to improve the result in two ways. Mainly, we get rid of the polyloglog factor in the runtime and we thus obtain an asymptotically optimal multichannel radio network MIS algorithm. In addition, our new analysis allows to generalize the class of graphs from those with polynomially bounded local independence to graphs where the local independence is bounded by an arbitrary function of the neighborhood radius.Comment: 37 pages, to be published in DISC 201

    Optimal competitiveness for the Rectilinear Steiner Arborescence problem

    Full text link
    We present optimal online algorithms for two related known problems involving Steiner Arborescence, improving both the lower and the upper bounds. One of them is the well studied continuous problem of the {\em Rectilinear Steiner Arborescence} (RSARSA). We improve the lower bound and the upper bound on the competitive ratio for RSARSA from O(logN)O(\log N) and Ω(logN)\Omega(\sqrt{\log N}) to Θ(logNloglogN)\Theta(\frac{\log N}{\log \log N}), where NN is the number of Steiner points. This separates the competitive ratios of RSARSA and the Symetric-RSARSA, two problems for which the bounds of Berman and Coulston is STOC 1997 were identical. The second problem is one of the Multimedia Content Distribution problems presented by Papadimitriou et al. in several papers and Charikar et al. SODA 1998. It can be viewed as the discrete counterparts (or a network counterpart) of RSARSA. For this second problem we present tight bounds also in terms of the network size, in addition to presenting tight bounds in terms of the number of Steiner points (the latter are similar to those we derived for RSARSA)
    corecore