20,735 research outputs found
Geometric programming prediction of design trends for OMV protective structures
The global optimization trends of protective honeycomb structural designs for spacecraft subject to hypervelocity meteroid and space debris are presented. This nonlinear problem is first formulated for weight minimization of the orbital maneuvering vehicle (OMV) using a generic monomial predictor. Five problem formulations are considered, each dependent on the selection of independent design variables. Each case is optimized by considering the dual geometric programming problem. The dual variables are solved for in terms of the generic estimated exponents of the monomial predictor. The primal variables are then solved for by conversion. Finally, parametric design trends are developed for ranges of the estimated regression parameters. Results specify nonmonotonic relationships for the optimal first and second sheet mass per unit areas in terms of the estimated exponents
Closed formula for the relative entropy of entanglement in all dimensions
The relative entropy of entanglement is defined in terms of the relative
entropy between an entangled state and its closest separable state (CSS). Given
a multipartite-state on the boundary of the set of separable states, we find a
closed formula for all the entangled state for which this state is a CSS. Quite
amazing, our formula holds for multipartite states in all dimensions. In
addition we show that if an entangled state is full rank, then its CSS is
unique. For the bipartite case of two qubits our formula reduce to the one
given in Phys. Rev. A 78, 032310 (2008).Comment: 8 pages, 1 figure, significantly revised; theorem 1 is now providing
necessary and sufficient conditions to determine if a state is CS
Majorization criterion for distillability of a bipartite quantum state
Bipartite quantum states are classified into three categories: separable
states, bound entangled states, and free entangled states. It is of great
importance to characterize these families of states for the development of
quantum information science. In this paper, I show that the separable states
and the bound entangled states have a common spectral property. More precisely,
I prove that for undistillable -- separable and bound entangled -- states, the
eigenvalue vector of the global system is majorized by that of the local
system. This result constitutes a new sufficient condition for distillability
of bipartite quantum states. This is achieved by proving that if a bipartite
quantum state satisfies the reduction criterion for distillability, then it
satisfies the majorization criterion for separability.Comment: 4 pages, no figures, REVTEX. A new lemma (Lemma 2) added. To appear
in Physical Review Letter
Improved transfer of quantum information using a local memory
We demonstrate that the quantum communication between two parties can be
significantly improved if the receiver is allowed to store the received signals
in a quantum memory before decoding them. In the limit of an infinite memory,
the transfer is perfect. We prove that this scheme allows the transfer of
arbitrary multipartite states along Heisenberg chains of spin-1/2 particles
with random coupling strengths.Comment: 4 pages, 1 figure; added references to homogenization and asymptotic
completenes
Full control by locally induced relaxation
We demonstrate a scheme for controlling a large quantum system by acting on a
small subsystem only. The local control is mediated to the larger system by
some fixed coupling Hamiltonian. The scheme allows to transfer arbitrary and
unknown quantum states from a memory on the large system (``upload access'') as
well as the inverse (``download access''). We study sufficient conditions of
the coupling Hamiltonian and give lower bounds on the fidelities for
downloading and uploading.Comment: 4 pages, 2 figure
Lower Bounds of Concurrence for Tripartite Quantum Systems
We derive an analytical lower bound for the concurrence of tripartite quantum
mixed states. A functional relation is established relating concurrence and the
generalized partial transpositions.Comment: 10 page
Squeezing as an irreducible resource
We show that squeezing is an irreducible resource which remains invariant
under transformations by linear optical elements. In particular, we give a
decomposition of any optical circuit with linear input-output relations into a
linear multiport interferometer followed by a unique set of single mode
squeezers and then another multiport interferometer. Using this decomposition
we derive a no-go theorem for superpositions of macroscopically distinct states
from single-photon detection. Further, we demonstrate the equivalence between
several schemes for randomly creating polarization-entangled states. Finally,
we derive minimal quantum optical circuits for ideal quantum non-demolition
coupling of quadrature-phase amplitudes.Comment: 4 pages, 3 figures, new title, removed the fat
Witnessing quantum discord in 2 x N systems
Bipartite states with vanishing quantum discord are necessarily separable and
hence positive partial transpose (PPT). We show that 2 x N states satisfy
additional property: the positivity of their partial transposition is
recognized with respect to the canonical factorization of the original density
operator. We call such states SPPT (for strong PPT). Therefore, we provide a
natural witness for a quantum discord: if a 2 x N state is not SPPT it must
contain nonclassical correlations measured by quantum discord. It is an analog
of the celebrated Peres-Horodecki criterion: if a state is not PPT it must be
entangled.Comment: 5 page
Wave Profile for Anti-force Waves with Maximum Possible Currents
In the theoretical investigation of the electrical breakdown of a gas, we apply a one-dimensional, steady state, constant velocity, three component fluid model and consider the electrons to be the main element in propagation of the wave. The electron gas temperature, and therefore the electron gas partial pressure, is considered to be large enough to provide the driving force. The wave is considered to have a shock front, followed by a thin dynamical transition region. Our set of electron fluid-dynamical equations consists of the equations of conservation of mass, momentum, and energy, plus the Poisson\u27s equation. The set of equations is referred to as the electron fluid dynamical equations; and a successful solution therefor must meet a set of acceptable physical conditions at the trailing edge of the wave. For breakdown waves with a significant current behind the shock front, modifications must be made to the set of electron fluid dynamical equations, as well as the shock condition on electron temperature. Considering existence of current behind the shock front, we have derived the shock condition on electron temperature, and for a set of experimentally measured wave speeds, we have been able to find maximum current values for which solutions to our set of electron velocity, electron temperature, and electron number density within the dynamical transition region of the wave
Entanglement versus Correlations in Spin Systems
We consider pure quantum states of spins or qubits and study the
average entanglement that can be \emph{localized} between two separated spins
by performing local measurements on the other individual spins. We show that
all classical correlation functions provide lower bounds to this
\emph{localizable entanglement}, which follows from the observation that
classical correlations can always be increased by doing appropriate local
measurements on the other qubits. We analyze the localizable entanglement in
familiar spin systems and illustrate the results on the hand of the Ising spin
model, in which we observe characteristic features for a quantum phase
transition such as a diverging entanglement length.Comment: 4 page
- …
