4,612 research outputs found
GSplit LBI: Taming the Procedural Bias in Neuroimaging for Disease Prediction
In voxel-based neuroimage analysis, lesion features have been the main focus
in disease prediction due to their interpretability with respect to the related
diseases. However, we observe that there exists another type of features
introduced during the preprocessing steps and we call them "\textbf{Procedural
Bias}". Besides, such bias can be leveraged to improve classification accuracy.
Nevertheless, most existing models suffer from either under-fit without
considering procedural bias or poor interpretability without differentiating
such bias from lesion ones. In this paper, a novel dual-task algorithm namely
\emph{GSplit LBI} is proposed to resolve this problem. By introducing an
augmented variable enforced to be structural sparsity with a variable splitting
term, the estimators for prediction and selecting lesion features can be
optimized separately and mutually monitored by each other following an
iterative scheme. Empirical experiments have been evaluated on the Alzheimer's
Disease Neuroimaging Initiative\thinspace(ADNI) database. The advantage of
proposed model is verified by improved stability of selected lesion features
and better classification results.Comment: Conditional Accepted by Miccai,201
Guaranteed Minimum-Rank Solutions of Linear Matrix Equations via Nuclear Norm Minimization
The affine rank minimization problem consists of finding a matrix of minimum
rank that satisfies a given system of linear equality constraints. Such
problems have appeared in the literature of a diverse set of fields including
system identification and control, Euclidean embedding, and collaborative
filtering. Although specific instances can often be solved with specialized
algorithms, the general affine rank minimization problem is NP-hard. In this
paper, we show that if a certain restricted isometry property holds for the
linear transformation defining the constraints, the minimum rank solution can
be recovered by solving a convex optimization problem, namely the minimization
of the nuclear norm over the given affine space. We present several random
ensembles of equations where the restricted isometry property holds with
overwhelming probability. The techniques used in our analysis have strong
parallels in the compressed sensing framework. We discuss how affine rank
minimization generalizes this pre-existing concept and outline a dictionary
relating concepts from cardinality minimization to those of rank minimization
Simultaneously Sparse Solutions to Linear Inverse Problems with Multiple System Matrices and a Single Observation Vector
A linear inverse problem is proposed that requires the determination of
multiple unknown signal vectors. Each unknown vector passes through a different
system matrix and the results are added to yield a single observation vector.
Given the matrices and lone observation, the objective is to find a
simultaneously sparse set of unknown vectors that solves the system. We will
refer to this as the multiple-system single-output (MSSO) simultaneous sparsity
problem. This manuscript contrasts the MSSO problem with other simultaneous
sparsity problems and conducts a thorough initial exploration of algorithms
with which to solve it. Seven algorithms are formulated that approximately
solve this NP-Hard problem. Three greedy techniques are developed (matching
pursuit, orthogonal matching pursuit, and least squares matching pursuit) along
with four methods based on a convex relaxation (iteratively reweighted least
squares, two forms of iterative shrinkage, and formulation as a second-order
cone program). The algorithms are evaluated across three experiments: the first
and second involve sparsity profile recovery in noiseless and noisy scenarios,
respectively, while the third deals with magnetic resonance imaging
radio-frequency excitation pulse design.Comment: 36 pages; manuscript unchanged from July 21, 2008, except for updated
references; content appears in September 2008 PhD thesi
Detecting multivariate interactions in spatial point patterns with Gibbs models and variable selection
We propose a method for detecting significant interactions in very large
multivariate spatial point patterns. This methodology develops high dimensional
data understanding in the point process setting. The method is based on
modelling the patterns using a flexible Gibbs point process model to directly
characterise point-to-point interactions at different spatial scales. By using
the Gibbs framework significant interactions can also be captured at small
scales. Subsequently, the Gibbs point process is fitted using a
pseudo-likelihood approximation, and we select significant interactions
automatically using the group lasso penalty with this likelihood approximation.
Thus we estimate the multivariate interactions stably even in this setting. We
demonstrate the feasibility of the method with a simulation study and show its
power by applying it to a large and complex rainforest plant population data
set of 83 species
Inverse Ising inference using all the data
We show that a method based on logistic regression, using all the data,
solves the inverse Ising problem far better than mean-field calculations
relying only on sample pairwise correlation functions, while still
computationally feasible for hundreds of nodes. The largest improvement in
reconstruction occurs for strong interactions. Using two examples, a diluted
Sherrington-Kirkpatrick model and a two-dimensional lattice, we also show that
interaction topologies can be recovered from few samples with good accuracy and
that the use of -regularization is beneficial in this process, pushing
inference abilities further into low-temperature regimes.Comment: 5 pages, 2 figures. Accepted versio
Foothill: A Quasiconvex Regularization for Edge Computing of Deep Neural Networks
Deep neural networks (DNNs) have demonstrated success for many supervised
learning tasks, ranging from voice recognition, object detection, to image
classification. However, their increasing complexity might yield poor
generalization error that make them hard to be deployed on edge devices.
Quantization is an effective approach to compress DNNs in order to meet these
constraints. Using a quasiconvex base function in order to construct a binary
quantizer helps training binary neural networks (BNNs) and adding noise to the
input data or using a concrete regularization function helps to improve
generalization error. Here we introduce foothill function, an infinitely
differentiable quasiconvex function. This regularizer is flexible enough to
deform towards and penalties. Foothill can be used as a binary
quantizer, as a regularizer, or as a loss. In particular, we show this
regularizer reduces the accuracy gap between BNNs and their full-precision
counterpart for image classification on ImageNet.Comment: Accepted in 16th International Conference of Image Analysis and
Recognition (ICIAR 2019
High-Dimensional Inference with the generalized Hopfield Model: Principal Component Analysis and Corrections
We consider the problem of inferring the interactions between a set of N
binary variables from the knowledge of their frequencies and pairwise
correlations. The inference framework is based on the Hopfield model, a special
case of the Ising model where the interaction matrix is defined through a set
of patterns in the variable space, and is of rank much smaller than N. We show
that Maximum Lik elihood inference is deeply related to Principal Component
Analysis when the amp litude of the pattern components, xi, is negligible
compared to N^1/2. Using techniques from statistical mechanics, we calculate
the corrections to the patterns to the first order in xi/N^1/2. We stress that
it is important to generalize the Hopfield model and include both attractive
and repulsive patterns, to correctly infer networks with sparse and strong
interactions. We present a simple geometrical criterion to decide how many
attractive and repulsive patterns should be considered as a function of the
sampling noise. We moreover discuss how many sampled configurations are
required for a good inference, as a function of the system size, N and of the
amplitude, xi. The inference approach is illustrated on synthetic and
biological data.Comment: Physical Review E: Statistical, Nonlinear, and Soft Matter Physics
(2011) to appea
Uncovering hidden geographies and socio-economic influences on fuel poverty using household fuel spend data: a meso-scale study in Scotland
- …