21,722 research outputs found
A Framework for High-Accuracy Privacy-Preserving Mining
To preserve client privacy in the data mining process, a variety of
techniques based on random perturbation of data records have been proposed
recently. In this paper, we present a generalized matrix-theoretic model of
random perturbation, which facilitates a systematic approach to the design of
perturbation mechanisms for privacy-preserving mining. Specifically, we
demonstrate that (a) the prior techniques differ only in their settings for the
model parameters, and (b) through appropriate choice of parameter settings, we
can derive new perturbation techniques that provide highly accurate mining
results even under strict privacy guarantees. We also propose a novel
perturbation mechanism wherein the model parameters are themselves
characterized as random variables, and demonstrate that this feature provides
significant improvements in privacy at a very marginal cost in accuracy.
While our model is valid for random-perturbation-based privacy-preserving
mining in general, we specifically evaluate its utility here with regard to
frequent-itemset mining on a variety of real datasets. The experimental results
indicate that our mechanisms incur substantially lower identity and support
errors as compared to the prior techniques
Back to the Future: The Managed Care Revolution
The evolution to a managed care system did not achieve the complete, fundamental change in the health care delivery system that was envisioned by some of its early proponents. As the managed care movement evolved beyond the prepaid group practice model, it focused primarily on methods used to spread the cost of health care services
The solution of transcendental equations
Some of the existing methods to globally approximate the roots of transcendental equations namely, Graeffe's method, are studied. Summation of the reciprocated roots, Whittaker-Bernoulli method, and the extension of Bernoulli's method via Koenig's theorem are presented. The Aitken's delta squared process is used to accelerate the convergence. Finally, the suitability of these methods is discussed in various cases
PSO based Neural Networks vs. Traditional Statistical Models for Seasonal Time Series Forecasting
Seasonality is a distinctive characteristic which is often observed in many
practical time series. Artificial Neural Networks (ANNs) are a class of
promising models for efficiently recognizing and forecasting seasonal patterns.
In this paper, the Particle Swarm Optimization (PSO) approach is used to
enhance the forecasting strengths of feedforward ANN (FANN) as well as Elman
ANN (EANN) models for seasonal data. Three widely popular versions of the basic
PSO algorithm, viz. Trelea-I, Trelea-II and Clerc-Type1 are considered here.
The empirical analysis is conducted on three real-world seasonal time series.
Results clearly show that each version of the PSO algorithm achieves notably
better forecasting accuracies than the standard Backpropagation (BP) training
method for both FANN and EANN models. The neural network forecasting results
are also compared with those from the three traditional statistical models,
viz. Seasonal Autoregressive Integrated Moving Average (SARIMA), Holt-Winters
(HW) and Support Vector Machine (SVM). The comparison demonstrates that both
PSO and BP based neural networks outperform SARIMA, HW and SVM models for all
three time series datasets. The forecasting performances of ANNs are further
improved through combining the outputs from the three PSO based models.Comment: 4 figures, 4 tables, 31 references, conference proceeding
- …