36,695 research outputs found

    Design study of a low cost civil aviation GPS receiver system

    Get PDF
    A low cost Navstar receiver system for civil aviation applications was defined. User objectives and constraints were established. Alternative navigation processing design trades were evaluated. Receiver hardware was synthesized by comparing technology projections with various candidate system designs. A control display unit design was recommended as the result of field test experience with Phase I GPS sets and a review of special human factors for general aviation users. Areas requiring technology development to ensure a low cost Navstar Set in the 1985 timeframe were identified

    Predicting protein function by machine learning on amino acid sequences – a critical evaluation

    Get PDF
    Copyright @ 2007 Al-Shahib et al; licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.Background: Predicting the function of newly discovered proteins by simply inspecting their amino acid sequence is one of the major challenges of post-genomic computational biology, especially when done without recourse to experimentation or homology information. Machine learning classifiers are able to discriminate between proteins belonging to different functional classes. Until now, however, it has been unclear if this ability would be transferable to proteins of unknown function, which may show distinct biases compared to experimentally more tractable proteins. Results: Here we show that proteins with known and unknown function do indeed differ significantly. We then show that proteins from different bacterial species also differ to an even larger and very surprising extent, but that functional classifiers nonetheless generalize successfully across species boundaries. We also show that in the case of highly specialized proteomes classifiers from a different, but more conventional, species may in fact outperform the endogenous species-specific classifier. Conclusion: We conclude that there is very good prospect of successfully predicting the function of yet uncharacterized proteins using machine learning classifiers trained on proteins of known function

    Endoscopic measurements using a panoramic annular lens

    Get PDF
    The objective of this project was to design, build, demonstrate, and deliver a prototype system for making measurements within cavities. The system was to utilize structured lighting as the means for making measurements and was to rely on a stationary probe, equipped with a unique panoramic annular lens, to capture a cylindrical view of the illuminated cavity. Panoramic images, acquired with a digitizing camera and stored in a desk top computer, were to be linearized and analyzed by mouse-driven interactive software

    Endoscopic inspection using a panoramic annular lens

    Get PDF
    The objective of this one year study was to design, build, and demonstrate a prototype system for cavity inspection. A cylindrical view of the cavity interior was captured in real time through a compound lens system consisting of a unique panoramic annular lens and a collector lens. Images, acquired with a digitizing camera and stored in a desktop computer, were manipulated using image processing software to aid in visual inspection and qualitative analysis. A detailed description of the lens and its applications is given

    List decoding of noisy Reed-Muller-like codes

    Full text link
    First- and second-order Reed-Muller (RM(1) and RM(2), respectively) codes are two fundamental error-correcting codes which arise in communication as well as in probabilistically-checkable proofs and learning. In this paper, we take the first steps toward extending the quick randomized decoding tools of RM(1) into the realm of quadratic binary and, equivalently, Z_4 codes. Our main algorithmic result is an extension of the RM(1) techniques from Goldreich-Levin and Kushilevitz-Mansour algorithms to the Hankel code, a code between RM(1) and RM(2). That is, given signal s of length N, we find a list that is a superset of all Hankel codewords phi with dot product to s at least (1/sqrt(k)) times the norm of s, in time polynomial in k and log(N). We also give a new and simple formulation of a known Kerdock code as a subcode of the Hankel code. As a corollary, we can list-decode Kerdock, too. Also, we get a quick algorithm for finding a sparse Kerdock approximation. That is, for k small compared with 1/sqrt{N} and for epsilon > 0, we find, in time polynomial in (k log(N)/epsilon), a k-Kerdock-term approximation s~ to s with Euclidean error at most the factor (1+epsilon+O(k^2/sqrt{N})) times that of the best such approximation

    Algorithmic linear dimension reduction in the l_1 norm for sparse vectors

    Get PDF
    This paper develops a new method for recovering m-sparse signals that is simultaneously uniform and quick. We present a reconstruction algorithm whose run time, O(m log^2(m) log^2(d)), is sublinear in the length d of the signal. The reconstruction error is within a logarithmic factor (in m) of the optimal m-term approximation error in l_1. In particular, the algorithm recovers m-sparse signals perfectly and noisy signals are recovered with polylogarithmic distortion. Our algorithm makes O(m log^2 (d)) measurements, which is within a logarithmic factor of optimal. We also present a small-space implementation of the algorithm. These sketching techniques and the corresponding reconstruction algorithms provide an algorithmic dimension reduction in the l_1 norm. In particular, vectors of support m in dimension d can be linearly embedded into O(m log^2 d) dimensions with polylogarithmic distortion. We can reconstruct a vector from its low-dimensional sketch in time O(m log^2(m) log^2(d)). Furthermore, this reconstruction is stable and robust under small perturbations

    Calibration of neural networks using genetic algorithms, with application to optimal path planning

    Get PDF
    Genetic algorithms (GA) are used to search the synaptic weight space of artificial neural systems (ANS) for weight vectors that optimize some network performance function. GAs do not suffer from some of the architectural constraints involved with other techniques and it is straightforward to incorporate terms into the performance function concerning the metastructure of the ANS. Hence GAs offer a remarkably general approach to calibrating ANS. GAs are applied to the problem of calibrating an ANS that finds optimal paths over a given surface. This problem involves training an ANS on a relatively small set of paths and then examining whether the calibrated ANS is able to find good paths between arbitrary start and end points on the surface

    Spin distribution of nuclear levels using static path approximation with random-phase approximation

    Get PDF
    We present a thermal and quantum-mechanical treatment of nuclear rotation using the formalism of static path approximation (SPA) plus random-phase approximation (RPA). Naive perturbation theory fails because of the presence of zero-frequency modes due to dynamical symmetry breaking. Such modes lead to infrared divergences. We show that composite zero-frequency excitations are properly treated within the collective coordinate method. The resulting perturbation theory is free from infrared divergences. Without the assumption of individual random spin vectors, we derive microscopically the spin distribution of the level density. The moment of inertia is thereby related to the spin-cutoff parameter in the usual way. Explicit calculations are performed for 56^Fe; various thermal properties are discussed. In particular, we demonstrate that the increase of the moment of inertia with increasing temperature is correlated with the suppression of pairing correlations.Comment: 12 pages, 8 figures, accepted for publication in Physical Review
    corecore