43 research outputs found
Analysis of Human Gait Cycle with Body Equilibrium based on leg Orientation
Gait analysis identifies the posture during movement in order to provide the correct actions for a normal gait. A person\u27s gait may differ from others and can be recognized by specific patterns. Healthy individuals exhibit normal gait patterns, while lower limb amputees exhibit abnormal gait patterns. To better understand the pitfalls of gait, it is imperative to develop systems capable of capturing the gait patterns of healthy individuals. The main objective of this research was to introduce a new concept in gait analysis by computing the static and dynamic equilibrium in a real-world environment. A relationship was also presented among the parameters stated as static \& dynamic equilibrium, speed, and body states. A sensing unit was installed on the designed metal-based leg mounting assembly on the lateral side of the leg. An algorithm was proposed based on two variables: the position of the leg in space and the angle of the knee joint measured by an IMU sensor and a rotary encoder. It was acceptable to satisfy the static conditions when the body was in a fixed position and orientation, whether lying down or standing. While walking and running, the orientation is determined by the position and knee angle variables, which fulfill the dynamic condition. High speed reveals a rapid change in orientation, while slow speed reveals a slow change in orientation. The proposed encoder-based feedback system successfully determined the flexion at 47, extension at 153, and all seven gait cycle phases were recognized within this range of motion. Body equilibrium facilitates individuals when they are at risk of falling or slipping
Eco-Friendly Management of Nausinoe Geometralis Through Botanical Extracts on Jasmine Plant
Jasmine leaf webworm, Nausinoe geometralis, is a significant pest of Jasminum spp. commonly known as Jasmine plant. This plant holds a special place in Pakistan\u27s culture; as it is declared as its national flower. N. geometralis feeds on the leaves of the jasmine plant; leaving it damaged and unattractive. Current study aimed to evaluate the efficacy of four botanical extracts (i.e. Neem, Taramira, Lemon grass, and Cactus) against N. geometralis; to explore an effective and eco-friendly method to protect the jasmine plant. Different concentrations of extracts were prepared using distilled water. Bioassays were performed on third instar larvae of N. geometralis following leaf dip method for various exposure intervals. Outcomes revealed that Neem extract was highly effective to manage the test insect pest followed by Taramira, Lemon grass, and Cactus. LC50 values of Neem after 24, 48, 72, and 96 hours were 22.25, 11.11, 11.31, and 15.82 ppm, respectively. It was concluded that botanical extracts can be utilized as promising agents in developing effective management strategies against N. geometralis. Future research should focus on optimizing the application methods and exploring the synergistic effects of these botanical extracts with other eco-friendly control measures to enhance their effectiveness against N. geometralis in field conditions
Human Gait Recognition Subject to Different Covariate Factors in a Multi-View Environment
Human gait recognition system identifies individuals based on their biometric traits. A human’s biometric features can be grouped into physiologic or behavioral traits. Biometric traits, such as the face [1], ears [2], iris [3], finger prints, passwords, and tokens, require highly accurate recognition and a well-controlled human interaction to be effective. In contrast, behavioral traits such as voice, signature, and gait do not require any human interaction and can be collected in a hidden and non-invasive mode with a camera system at a low resolution. In comparison with other physiological traits, one of the main advantages of gait analysis is the collection of data from a certain distance. However, gait is less powerful than physiological traits, yet it still has widespread application in surveillance for unfavorable situations. From traditional algorithms to deep learning models, a gait survey provides a detailed history of gait recognition
Towards Sweetness Classification of Orange Cultivars Using Short‑Wave NIR Spectroscopy
The global orange industry constantly faces new technical challenges to meet consumer demands for quality fruits. Instead of traditional subjective fruit quality assessment methods, the interest in the horticulture industry has increased in objective, quantitative, and non-destructive assessment methods. Oranges have a thick peel which makes their non-destructive quality assessment challenging. This paper evaluates the potential of short-wave NIR spectroscopy and direct sweetness classification approach for Pakistani cultivars of orange, i.e., Red-Blood, Mosambi, and Succari. The correlation between quality indices, i.e., Brix, titratable acidity (TA), Brix: TA and BrimA (Brix minus acids), sensory assessment of the fruit, and short-wave NIR spectra, is analysed. Mix cultivar oranges are classified as sweet, mixed, and acidic based on short-wave NIR spectra. Short-wave NIR spectral data were obtained using the industry standard F-750 fruit quality meter (310–1100 nm). Reference Brix and TA measurements were taken using standard destructive testing methods. Reference taste labels i.e., sweet, mix, and acidic, were acquired through sensory evaluation of samples. For indirect fruit classification, partial least squares regression models were developed for Brix, TA, Brix: TA, and BrimA estimation with a correlation coefficient of 0.57, 0.73, 0.66, and 0.55, respectively, on independent test data. The ensemble classifier achieved 81.03% accuracy for three classes (sweet, mixed, and acidic) classification on independent test data for direct fruit classification. A good correlation between NIR spectra and sensory assessment is observed as compared to quality indices. A direct classification approach is more suitable for a machine-learning-based orange sweetness classification using NIR spectroscopy than the estimation of quality indices
In vivo study of optical speckle decorrelation time across depths in the mouse brain
The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain in vivo via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm
Analyzing molecular signatures in preeclampsia and fetal growth restriction: Identifying key genes, pathways, and therapeutic targets for preterm birth
Background:Intrauterine growth restriction (IUGR) and preeclampsia (PE) are intricately linked with specific maternal health conditions, exhibit shared placental abnormalities, and play pivotal roles in precipitating preterm birth (PTB) incidences. However, the molecular mechanism underlying the association between PE and IUGR has not been determined. Therefore, we aimed to analyze the data of females with PE and those with PE + IUGR to identify the key gene(s), their molecular pathways, and potential therapeutic interactions.Methods:In this study, a comprehensive relationship analysis of both PE and PE + IUGR was conducted using RNA sequence datasets. Using two datasets (GSE148241 and GSE114691), differential gene expression analysis via DESeq2 through R-programming was performed. Gene set enrichment analysis was performed using ClusterProfiler, protein‒protein interaction (PPI) networks were constructed, and cluster analyses were conducted using String and MCODE in Cytoscape. Functional enrichment analyses of the resulting subnetworks were performed using ClueGO software. The hub genes were identified under both conditions using the CytoHubba method. Finally, the most common hub protein was docked against a library of bioactive flavonoids and PTB drugs using the PyRx AutoDock tool, followed by molecular dynamic (MD) simulation analysis. Pharmacokinetic analysis was performed to determine the ADMET properties of the compounds using pkCSM.Results:We identified eight hub genes highly expressed in the case of PE, namely, PTGS2, ENG, KIT, MME, CGA, GAPDH, GPX3, and P4HA1, and the network of the PE + IUGR gene set demonstrated that nine hub genes were overexpressed, namely, PTGS2, FGF7, FGF10, IL10, SPP1, MPO, THBS1, CYBB, and PF4. PTGS2 was the most common hub gene found under both conditions (PE and PEIUGR). Moreover, the greater (−9.1 kcal/mol) molecular binding of flavoxate to PTGS2 was found to have satisfactory pharmacokinetic properties compared with those of other compounds. The flavoxate-bound PTGS2 protein complex remained stable throughout the simulation; with a ligand fit to protein, i.e., a RMSD ranging from ∼2.0 to 4.0 Å and a RMSF ranging from ∼0.5 to 2.9 Å, was observed throughout the 100 ns analysis.Conclusion:The findings of this study may be useful for treating PE and IUGR in the management of PTB
Impact of the COVID-19 pandemic on knowledge, perceptions, and effects of telemedicine among the general population of Pakistan: A national survey
BackgroundTelemedicine is the provision of healthcare services through information and communication technology with the potential to mobilize all facets of the health sector to prevent the spread of COVID-19, provide quality healthcare, protect patients, doctors, and the public from exposure to disease, and reduce the burden on the healthcare system. This study aims to identify knowledge, perceptions, willingness to use, and the impact of the COVID-19 pandemic on telemedicine awareness.MethodsA cross-sectional study was conducted from 27 May 2020 to 17 June 2020 using the convenient sampling technique in the general population of Pakistan. Data were collected by designing an online questionnaire consisting of demographic information, knowledge, attitude perceptions, barriers, utilization, and the impact of the COVID-19 pandemic on telemedicine.ResultsOf the 602 participants included in the study, 70.1% had heard about telemedicine, 54.3% had a good understanding of the definition of “telemedicine,” 81.4% had not used telemedicine in the past, 29.9% did not know that telemedicine was available before the COVID-19 pandemic, and 70.4% responded that the COVID-19 pandemic had changed their attitudes toward telemedicine. Gender (p = 0.017) and family income (p = 0.027) had a significant association with the perception of the benefits of telemedicine.ConclusionThe knowledge and usage of telemedicine are lacking due to inadequate awareness and technology. The need of the hour is to maximize the application of telemedicine to overcome the deficiencies of the healthcare system. Hence, it is essential to increase awareness through various means and develop an appropriate infrastructure to attain maximum benefits from telehealth services
In vivo study of optical speckle decorrelation time across depths in the mouse brain
The strong optical scattering of biological tissue confounds our ability to focus light deeply into the brain beyond depths of a few hundred microns. This challenge can be potentially overcome by exploiting wavefront shaping techniques which allow light to be focused through or inside scattering media. However, these techniques require the scattering medium to be static, as changes in the arrangement of the scatterers between the wavefront recording and playback steps reduce the fidelity of the focus that is formed. Furthermore, as the thickness of the scattering medium increases, the influence of the dynamic nature becomes more severe due to the growing number of scattering events experienced by each photon. In this paper, by examining the scattering dynamics in the mouse brain in vivo via multispeckle diffusing wave spectroscopy (MSDWS) using a custom fiber probe that simulates a point-like source within the brain, we investigate the relationship between this decorrelation time and the depth of the point-like light source inside the living mouse brain at depths up to 3.2 mm
Surgical site infection after gastrointestinal surgery in high-income, middle-income, and low-income countries: a prospective, international, multicentre cohort study
Background: Surgical site infection (SSI) is one of the most common infections associated with health care, but its importance as a global health priority is not fully understood. We quantified the burden of SSI after gastrointestinal surgery in countries in all parts of the world.
Methods: This international, prospective, multicentre cohort study included consecutive patients undergoing elective or emergency gastrointestinal resection within 2-week time periods at any health-care facility in any country. Countries with participating centres were stratified into high-income, middle-income, and low-income groups according to the UN's Human Development Index (HDI). Data variables from the GlobalSurg 1 study and other studies that have been found to affect the likelihood of SSI were entered into risk adjustment models. The primary outcome measure was the 30-day SSI incidence (defined by US Centers for Disease Control and Prevention criteria for superficial and deep incisional SSI). Relationships with explanatory variables were examined using Bayesian multilevel logistic regression models. This trial is registered with ClinicalTrials.gov, number NCT02662231.
Findings: Between Jan 4, 2016, and July 31, 2016, 13 265 records were submitted for analysis. 12 539 patients from 343 hospitals in 66 countries were included. 7339 (58·5%) patient were from high-HDI countries (193 hospitals in 30 countries), 3918 (31·2%) patients were from middle-HDI countries (82 hospitals in 18 countries), and 1282 (10·2%) patients were from low-HDI countries (68 hospitals in 18 countries). In total, 1538 (12·3%) patients had SSI within 30 days of surgery. The incidence of SSI varied between countries with high (691 [9·4%] of 7339 patients), middle (549 [14·0%] of 3918 patients), and low (298 [23·2%] of 1282) HDI (p < 0·001). The highest SSI incidence in each HDI group was after dirty surgery (102 [17·8%] of 574 patients in high-HDI countries; 74 [31·4%] of 236 patients in middle-HDI countries; 72 [39·8%] of 181 patients in low-HDI countries). Following risk factor adjustment, patients in low-HDI countries were at greatest risk of SSI (adjusted odds ratio 1·60, 95% credible interval 1·05–2·37; p=0·030). 132 (21·6%) of 610 patients with an SSI and a microbiology culture result had an infection that was resistant to the prophylactic antibiotic used. Resistant infections were detected in 49 (16·6%) of 295 patients in high-HDI countries, in 37 (19·8%) of 187 patients in middle-HDI countries, and in 46 (35·9%) of 128 patients in low-HDI countries (p < 0·001).
Interpretation: Countries with a low HDI carry a disproportionately greater burden of SSI than countries with a middle or high HDI and might have higher rates of antibiotic resistance. In view of WHO recommendations on SSI prevention that highlight the absence of high-quality interventional research, urgent, pragmatic, randomised trials based in LMICs are needed to assess measures aiming to reduce this preventable complication