276 research outputs found
Plato on Well-Being
Plato's dialogues use several terms for the concept of well-being, which concept plays a central ethical role as the ultimate goal for action and a central political role as the proper aim for states. But the dialogues also reveal sharp debate about what human well-being is. I argue that they endorse a Socratic conception of well-being as virtuous activity, by considering and rejecting several alternatives, including an ordinary conception that lists a variety of goods, a Protagorean conception that identifies one's well-being with what appears one to be one's well-being, and hedonistic conceptions
Effect of oxygen and nitrogen functionalization on the physical and electronic structure of graphene
Covalent functionalization of graphene offers opportunities for tailoring its properties and is an unavoidable consequence of some graphene synthesis techniques. However, the changes induced by the functionalization are not well understood. By using atomic sources to control the extent of the oxygen and nitrogen functionalization, we studied the evolution in the structure and properties at the atomic scale. Atomic oxygen reversibly introduces epoxide groups whilst, under similar conditions, atomic nitrogen irreversibly creates diverse functionalities including substitutional, pyridinic, and pyrrolic nitrogen. Atomic oxygen leaves the Fermi energy at the Dirac point (i.e., undoped), whilst atomic nitrogen results in a net n-doping; however, the experimental results are consistent with the dominant electronic effect for both being a transition from delocalized to localized states, and hence the loss of the signature electronic structure of graphene
Examining the antecedents of challenge and threat states: The influence of perceived required effort and support availability
To date, limited research has explicitly examined the antecedents of challenge and threat states proposed by the biopsychosocial model. Thus, the aim of the present study was to examine the influence of perceived required effort and support availability on demand/resource evaluations, challenge and threat states, and motor performance. A 2 (required effort; high, low) ïżœ 2 (support availability; available, not available) between-subjects design was used with one hundred and twenty participants randomly assigned to one of four experimental conditions. Participants received instructions designed to manipulate perceptions of required effort and support availability before demand/resource evaluations and cardiovascular responses were assessed. Participants then performed the novel motor task (laparoscopic surgery) while performance was recorded. Participants in the low perceived required effort condition evaluated the task as more of a challenge (i.e., resources outweighed demands), exhibited a cardiovascular response more indicative of a challenge state (i.e., higher cardiac output and lower total peripheral resistance), and performed the task better (i.e., quicker completion time) than those in the high perceived required effort condition. However, perceptions of support availability had no significant impact on participants' demand/resource evaluations, cardiovascular responses, or performance. Furthermore, there was no significant interaction effect between perceptions of required effort and support availability. The findings suggest that interventions aimed at promoting a challenge state should include instructions that help individuals perceive that the task is not difficult and requires little physical and mental effort to perform effectively
The PHENIX Experiment at RHIC
The physics emphases of the PHENIX collaboration and the design and current
status of the PHENIX detector are discussed. The plan of the collaboration for
making the most effective use of the available luminosity in the first years of
RHIC operation is also presented.Comment: 5 pages, 1 figure. Further details of the PHENIX physics program
available at http://www.rhic.bnl.gov/phenix
Atrioventricular node dysfunction and ion channel transcriptome in pulmonary hypertension
BackgroundâHeart block is associated with pulmonary hypertension, and the aim of the study was to test the hypothesis that the heart block is the result of a change in the ion channel transcriptome of the atrioventricular (AV) node. Methods and ResultsâThe most commonly used animal model of pulmonary hypertension, the monocrotaline-injected rat, was used. The functional consequences of monocrotaline injection were determined by echocardiography, ECG recording, and electrophysiological experiments on the Langendorff-perfused heart and isolated AV node. The ion channel transcriptome was measured by quantitative PCR, and biophysically detailed computer modeling was used to explore the changes observed. After monocrotaline injection, echocardiography revealed the pattern of pulmonary artery blood flow characteristic of pulmonary hypertension and right-sided hypertrophy and failure; the Langendorff-perfused heart and isolated AV node revealed dysfunction of the AV node (eg, 50% incidence of heart block in isolated AV node); and quantitative PCR revealed a widespread downregulation of ion channel and related genes in the AV node (eg, >50% downregulation of Cav1.2/3 and HCN1/2/4 channels). Computer modeling predicted that the changes in the transcriptome if translated into protein and function would result in heart block. ConclusionsâPulmonary hypertension results in a derangement of the ion channel transcriptome in the AV node, and this is the likely cause of AV node dysfunction in this disease
- âŠ