2,317 research outputs found
Second Order Perturbation Theory for Improved Gluon and Staggered Quark Actions
We present the results of our perturbative calculations of the static quark
potential, small Wilson loops, the static quark self energy, and the mean link
in Landau gauge. These calculations are done for the one loop Symanzik improved
gluon action, and the improved staggered quark action.Comment: 3 pages, LaTeX, Lattice2001(improvement
High-precision determination of the light-quark masses from realistic lattice QCD
Three-flavor lattice QCD simulations and two-loop perturbation theory are
used to make the most precise determination to date of the strange-, up-, and
down-quark masses, , , and , respectively. Perturbative matching
is required in order to connect the lattice-regularized bare- quark masses to
the masses as defined in the \msbar scheme, and this is done here for the first
time at next-to-next-to leading (or two-loop) order. The bare-quark masses
required as input come from simulations by the MILC collaboration of a
highly-efficient formalism (using so-called ``staggered'' quarks), with three
flavors of light quarks in the Dirac sea; these simulations were previously
analyzed in a joint study by the HPQCD and MILC collaborations, using
degenerate and quarks, with masses as low as , and two values of
the lattice spacing, with chiral extrapolation/interpolation to the physical
masses. With the new perturbation theory presented here, the resulting \msbar\
masses are m^\msbar_s(2 {GeV}) = 87(0)(4)(4)(0) MeV, and \hat m^\msbar(2
{GeV}) = 3.2(0)(2)(2)(0) MeV, where \hat m = \sfrac12 (m_u + m_d) is the
average of the and masses. The respective uncertainties are from
statistics, simulation systematics, perturbation theory, and
electromagnetic/isospin effects. The perturbative errors are about a factor of
two smaller than in an earlier study using only one-loop perturbation theory.
Using a recent determination of the ratio due to
the MILC collaboration, these results also imply m^\msbar_u(2 {GeV}) =
1.9(0)(1)(1)(2) MeV and m^\msbar_d(2 {GeV}) = 4.4(0)(2)(2)(2) MeV. A
technique for estimating the next order in the perturbative expansion is also
presented, which uses input from simulations at more than one lattice spacing
Taste-Changing in Staggered Quarks
We present results from a systematic perturbative investigation of
taste-changing in improved staggered quarks. We show one-loop taste-changing
interactions can be removed perturbatively by an effective four-quark term and
calculate the necessary coefficients.Comment: 3 pages using espcrc2.sty and amsmath.sty, 1 Feynman diagram using
feynmp.sty for Lattice2002(improve
Highly Improved Naive and Staggered Fermions
We present a new action for highly improved staggered fermions. We show that
perturbative calculations for the new action are well-behaved where those of
the conventional staggered action are badly behaved. We discuss the effects of
the new terms in controlling flavor mixing, and discuss the design of operators
for the action.Comment: Contribution to Lattice2001(improvement); 3 page
Designed beta-hairpins inhibit LDH5 oligomerization and enzymatic activity
Lactate dehydrogenase 5 (LDH5) is overexpressed in metastatic tumors and is an attractive target for anticancer therapy. Small-molecule drugs have been developed to target the substrate/cofactor sites of LDH5, but none has reached the clinic to date, and alternative strategies remain almost unexplored. Combining rational and computer-based approaches, we identified peptidic sequences with high affinity toward a ÎČ-sheet region that is involved in protein-protein interactions (PPIs) required for the activity of LDH5. To improve stability and potency, these sequences were grafted into a cyclic cell-penetrating ÎČ-hairpin peptide scaffold. The lead grafted peptide, cGmC9, inhibited LDH5 activity in vitro in low micromolar range and more efficiently than the small-molecule inhibitor GNE-140. cGmC9 inhibits LDH5 by targeting an interface unlikely to be inhibited by small-molecule drugs. This lead will guide the development of new LDH5 inhibitors and challenges the landscape of drug discovery programs exclusively dedicated to small molecules. </p
European Mixed Forests: definition and research perspectives
peer-reviewedAim of study: We aim at (i) developing a reference definition of mixed forests in order to harmonize comparative research in mixed forests and (ii) briefly review the research perspectives in mixed forests.
Area of study: The definition is developed in Europe but can be tested worldwide.
Material and methods: Review of existent definitions of mixed forests based and literature review encompassing
dynamics, management and economic valuation of mixed forests.
Main results: A mixed forest is defined as a forest unit, excluding linear formations, where at least two tree species coexist at any developmental stage, sharing common resources (light, water, and/or soil nutrients). The presence of each of the component species is normally quantified as a proportion of the number of stems or of basal area, although volume, biomass or canopy cover as well as proportions by occupied stand area may be used for specific objectives. A variety of structures and patterns of mixtures can occur, and the interactions between the component species and their relative proportions may change over time. The research perspectives identified are (i) species interactions and responses to hazards, (ii) the concept of maximum density in mixed forests, (iii) conversion of monocultures to mixed-species forest and (iv) economic valuation of ecosystem services provided by mixed forests.
Research highlights: The definition is considered a high-level one which encompasses previous attempts to define mixed forests. Current fields of research indicate that gradient studies, experimental design approaches, and model simulations are key topics providing new research opportunities.The networking in this study has been supported by COST Action FP1206 EuMIXFOR
Climate affects neighbourâinduced changes in leaf chemical defences and tree diversityâherbivory relationships
1. Associational resistance theory predicts that insect herbivory decreases with increasing tree diversity in forest ecosystems. However, the generality of this effect and its underlying mechanisms are still debated, particularly since evidence has accumulated that climate may influence the direction and strength of the relationship between diversity and herbivory. 2. We quantified insect leaf herbivory and leaf chemical defences (phenolic compounds) of silver birch Betula pendula in pure and mixed plots with different tree species composition across 12 tree diversity experiments in different climates. We investigated whether the effects of neighbouring tree species diversity on insect herbivory in birch, that is, associational effects, were dependent on the climatic context, and whether neighbour-induced changes in birch chemical defences were involved in associational resistance to insect herbivory. 3. We showed that herbivory on birch decreased with tree species richness (i.e. associational resistance) in colder environments but that this relationship faded as mean annual temperature increased. 4. Birch leaf chemical defences increased with tree species richness but decreased with the phylogenetic distinctiveness of birch from its neighbours, particularly in warmer and more humid environments
Knowledge gaps about mixed forests : What do European forest managers want to know and what answers can science provide?
Research into mixed-forests has increased substantially in the last decades but the extent to which the new knowledge generated meets practitioners' concerns and is adequately transmitted to them is unknown. Here we provide the current state of knowledge and future research directions with regards to 10 questions about mixed forest functioning and management identified and selected by a range of European forest managers during an extensive participatory process. The set of 10 questions were the highest ranked questions from an online prioritization exercise involving 168 managers from 22 different European countries. In general, the topics of major concern for forest managers coincided with the ones that are at the heart of most research projects. They covered important issues related to the management of mixed forests and the role of mixtures for the stability of forests faced with environmental changes and the provision of ecosystem services to society. Our analysis showed that the current scientific knowledge about these questions was rather variable and particularly low for those related to the management of mixed forests over time and the associated costs. We also found that whereas most research projects have sought to evaluate whether mixed forests are more stable or provide more goods and services than monocultures, there is still little information on the underlying mechanisms and trade-offs behind these effects. Similarly, we identified a lack of knowledge on the spatio-temporal scales at which the effects of mixtures on the resistance and adaptability to environmental changes are operating. Our analysis may help researchers to identify what knowledge needs to be better transferred and to better design future research initiatives meeting practitioner's concerns.Peer reviewe
Direct measurement of single-molecule dynamics and reaction kinetics in confinement using time-resolved transmission electron microscopy
We report experimental methodologies utilising transmission electron microscopy (TEM) as an imaging tool for reaction kinetics at the single molecule level, in direct space and with spatiotemporal continuity. Using reactions of perchlorocoronene (PCC) in nanotubes of different diameters and at different temperatures, we found a period of molecular movement to precede the intermolecular addition of PCC, with a stronger dependence of the reaction rate on the nanotube diameter, controlling the local environments around molecules, than on the reaction temperature (â175, 23 or 400 °C). Once initiated, polymerisation of PCC follows zero-order reaction kinetics with the observed reaction cross section Ïobs of 1.13 Ă 10â9 nm2 (11.3 ± 0.6 barn), determined directly from time-resolved TEM image series acquired with a rate of 100 frames per second. Polymerisation was shown to proceed from a single point, with molecules reacting sequentially, as in a domino effect, due to the strict conformational requirement of the DielsâAlder cycloaddition creating the bottleneck for the reaction. The reaction mechanism was corroborated by correlating structures of reaction intermediates observed in TEM images, with molecular weights measured by using mass spectrometry (MS) when the same reaction was triggered by UV irradiation. The approaches developed in this study bring the imaging of chemical reactions at the single-molecule level closer to traditional concepts of chemistry
- âŠ