14 research outputs found
Adversarial Deep Network Embedding for Cross-network Node Classification
In this paper, the task of cross-network node classification, which leverages
the abundant labeled nodes from a source network to help classify unlabeled
nodes in a target network, is studied. The existing domain adaptation
algorithms generally fail to model the network structural information, and the
current network embedding models mainly focus on single-network applications.
Thus, both of them cannot be directly applied to solve the cross-network node
classification problem. This motivates us to propose an adversarial
cross-network deep network embedding (ACDNE) model to integrate adversarial
domain adaptation with deep network embedding so as to learn network-invariant
node representations that can also well preserve the network structural
information. In ACDNE, the deep network embedding module utilizes two feature
extractors to jointly preserve attributed affinity and topological proximities
between nodes. In addition, a node classifier is incorporated to make node
representations label-discriminative. Moreover, an adversarial domain
adaptation technique is employed to make node representations
network-invariant. Extensive experimental results demonstrate that the proposed
ACDNE model achieves the state-of-the-art performance in cross-network node
classification
What Makes an Elite Shooter and Archer? The Critical Role of Interoceptive Attention
It is well-acknowledged that attention is important for expert performance in sports. However, the role of interoceptive attention, i.e., the attentional mechanism of awareness and conscious focus of bodily somatic and visceral signals, in self-paced and far-aiming sports remains to be explored. This study aims to investigate the relationship of expertise level and interoceptive attention ability in shooting and archery, and to examine if interoceptive attention can be improved by mindfulness training in elite athletes of shooting and archery. We tested the performance differences of 41 elite athletes from the Chinese national team of shooting and archery and 43 non-elite athletes from a provincial team in breath detection task (BDT) and dot flash detection task (DDT), which were designed to measure interoceptive and exteroceptive attention (i.e., attention toward information input of primary sensory), respectively. Furthermore, we applied mindfulness training to the 41 elite athletes for 5–8 weeks and remeasured their performances of BDT and DDT. Results showed that elite athletes outperformed non-elite athletes in BDT (but not in DDT) both in accuracy (DiffBDT = 11.50%, p = 0.004) and in discrimination sensitivity (d′, DiffBDT = 1.159, p = 0.002). Difference in accuracy and d′ reached significant level only in BDT (accuracy: DiffBDT = −8.50%, p = 0.001; d′: DiffBDT = −0.822, p = 0.003) before and after mindfulness training. These results indicate that elite athletes of shooting and archery (i.e., relative to non-elite athletes) can better perceive the somatic and visceral responses or changes and discriminate these signals from noises. Moreover, interoceptive attention can be improved by mindfulness training. These results have important implications for the selection and training of athletes of shooting and archery
Using Network Pharmacology and Molecular Docking to Explore the Mechanism of Shan Ci Gu (Cremastra appendiculata) Against Non-Small Cell Lung Cancer
Background: In recent years, the incidence and mortality rates of non-small cell lung cancer (NSCLC) have increased significantly. Shan Ci Gu is commonly used as an anticancer drug in traditional Chinese medicine; however, its specific mechanism against NSCLC has not yet been elucidated. Here, the mechanism was clarified through network pharmacology and molecular docking.Methods: The Traditional Chinese Medicine Systems Pharmacology database was searched for the active ingredients of Shan Ci Gu, and the relevant targets in the Swiss Target Prediction database were obtained according to the structure of the active ingredients. GeneCards were searched for NSCLC-related disease targets. We obtained the cross-target using VENNY to obtain the core targets. The core targets were imported into the Search Tool for the Retrieval of Interacting Genes/Proteins database, and Cytoscape software was used to operate a mesh chart. R software was used to analyze the Gene Ontology biological processes (BPs) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment. The core targets and active compounds were molecularly docked through Auto-Dock Vina software to predict the detailed molecular mechanism of Shan Ci Gu for NSCLC treatment. We did a simple survival analysis with hub gene to assess the prognosis of NSCLC patients.Results: Three compounds were screened to obtain 143 target genes and 1,226 targets related to NSCLC, of which 56 genes were related to NSCLC treatment. Shan Ci Gu treatment for NSCLC involved many BPs and acted on main targets including epidermal growth factor receptor (EGFR), ESR1, and SRC through signaling pathways including the endocrine resistance, EGFR tyrosine kinase inhibitor resistance, and ErbB signaling pathways. Shan Ci Gu might be beneficial for treating NSCLC by inhibiting cell proliferation and migration. Molecular docking revealed that the active compounds β-sitosterol, stigmasterol, and 2-methoxy-9,10-dihydrophenanthrene-4,5-diol had good affinity with the core target genes (EGFR, SRC, and ESR1). Core targets included EGFR, SRC, ESR1, ERBB2, MTOR, MCL1, matrix metalloproteinase 2 (MMP2), MMP9, KDR, and JAK2. Key KEGG pathways included endocrine resistance, EGFR tyrosine kinase inhibitor resistance, ErbB signaling, PI3K-Akt signaling, and Rap1 signaling pathways. These core targets and pathways have an inhibitory effect on the proliferation of NSCLC cells.Conclusion: Shan Ci Gu can treat NSCLC through a multi-target, multi-pathway molecular mechanism and effectively improve NSCLC prognosis. This study could serve as a reference for further mechanistic research on wider application of Shan Ci Gu for NSCLC treatment
A four-stage DEA-based efficiency evaluation of public hospitals in China after the implementation of new medical reforms.
This study applied the non-parametric four-stage data envelopment analysis method (Four-Stage DEA) to measure the relative efficiencies of Chinese public hospitals from 2010 to 2016, and to determine how efficiencies were affected by eight factors. A sample of public hospitals (n = 84) was selected from Chongqing, China, including general hospitals and traditional Chinese medicine hospitals graded level 2 or above. The Four-Stage-DEA method was chosen since it enables the control of the impact of environment factors on efficiency evaluation results. Data on the number of staff, government financial subsidies, the number of beds and fixed assets were used as input whereas the number of out-patients and emergency department patients and visits, the number of discharged patients, medical and health service income and hospital bed utilization rate were chosen as study outputs. As relevant environmental variables, we selected GDP per capita, permanent population, population density, number of hospitals and number of available sickbeds in local medical institutions. The relative efficiencies (i.e. technical, pure technical, scale) of sample hospitals were also calculated to analyze the change between the first stage and fourth stage every year. The study found that Four-Stage-DEA can effectively filter the impact of environmental factors on evaluation results, which sets it apart from other models commonly used in existing studies
Characteristics of PM2.5-Bound Polycyclic Aromatic Hydrocarbons and Nitro-Polycyclic Aromatic Hydrocarbons at A Roadside Air Pollution Monitoring Station in Kanazawa, Japan
Polycyclic aromatic hydrocarbons (PAHs) and nitro-PAHs (NPAHs) in PM2.5 samples were collected at a roadside monitoring station in Kanazawa, Japan, in every season from 2017 to 2018. Nine PAHs and five NPAHs were determined using high-performance liquid chromatography with fluorescence detection and chemiluminescence detection, respectively. The mean concentrations of PAHs and NPAHs were highest in winter and lowest in summer. Fluoranthene and pyrene were the dominant PAHs and 1-nitropyrene was the dominant NPAH in all seasons, and these compounds were mainly emitted by diesel vehicles. The concentration ratio of benzo(a)pyrene (BaP) to benzo(ghi)perylene (BgPe) ((BaP)/(BgPe)) and of indeno(1,2,3-cd)pyrene (IDP) to the sum of IDP and benzo(ghi)perylene (BgPe) ((IDP)/((IDP)+(BgPe0) might still be useful indicators for identifying traffic emission sources today. Moreover, our results showed that the carcinogenic risk in all seasons was below the acceptable limit set by the WHO
Modelling and Control Methods in Path Tracking Control for Autonomous Agricultural Vehicles: A Review of State of the Art and Challenges
This paper provides a review of path-tracking strategies used in autonomous agricultural vehicles, mainly from two aspects: vehicle model construction and the development and improvement of path-tracking algorithms. Vehicle models are grouped into numerous types based on the structural characteristics and working conditions, including wheeled tractors, tracked tractors, rice transplanters, high clearance sprays, agricultural robots, agricultural tractor–trailers, etc. The application and improvement of path-tracking control methods are summarized based on the different working scenes and types of agricultural machinery. This study explores each of these methods in terms of accuracy, stability, robustness, and disadvantages/advantages. The main challenges in the field of agricultural vehicle path tracking control are defined, and future research directions are offered based on critical reviews. This review aims to provide a reference for determining which controllers to use in path-tracking control development for an autonomous agricultural vehicle
Characteristics of Polycyclic Aromatic Hydrocarbons (PAHs) and Common Air Pollutants at Wajima, a Remote Background Site in Japan
Background: Background sites are mainly affected by long-range-transported air pollutants, resulting in potential adverse effects on local atmospheric environments. A 4–5 year observational study was conducted to illustrate the air pollution profile at the Kanazawa University Wajima air monitoring station (KUWAMS), an ideal remote background site in Japan. Methods: Nine polycyclic aromatic hydrocarbons (PAHs) in the particulate phase and various air pollutants were continuously monitored for 4–5 years. Diagnostic ratios of PAHs and back-trajectory analysis were applied to trace the possible sources of the air pollutants collected at the sampling site. Results: The atmospheric concentration of PAHs in the atmosphere at the site decreased from 2014 to 2019, benefit from the predominant air pollution control policy in China and Japan. Common air pollutants including sulfur dioxide (SO2), nitrogen oxides (NOx), ozone, methane (CH4), and non-methane hydrocarbon (NMHC) were detected in low concentrations from 2016 to 2019, while ozone (O3) and particulate matter (PM2.5, PM with a diameter less than 2.5 μm) were present in high levels that exceeded the Japanese standards. Most air pollutants peaked in spring and showed evident diurnal variations in spring and summer. Conclusions: This is the first study to clarify the atmospheric behaviors of multiple air pollutants at a background site in Japan. Significant external air pollutant impact and unneglectable air pollution were demonstrated at KUWAMS, indicating the importance of studying atmospheric pollution at remote sites
Chronic Hypoxia-Induced Microvessel Proliferation and Basal Membrane Degradation in the Bone Marrow of Rats Regulated through the IL-6/JAK2/STAT3/MMP-9 Pathway
Chronic hypoxia (CH) is characterized by long-term hypoxia that is associated with microvessel proliferation and basal membrane (BM) degradation in tissues. The IL-6/JAK2/STAT3/MMP-9 pathway has been described in a variety of human cancers and plays an essential role in microvessel proliferation and BM degradation. Therefore, this study investigated the role of the IL-6/JAK2/STAT3/MMP-9 pathway in hypoxia-mediated microvessel proliferation and BM degradation in the rat bone marrow. Eighty pathogen-free Sprague Dawley male rats were randomly divided into four groups (20 per group)—control group, CH group (exposed to hypoxia in a hypobaric chamber at a simulated altitude of 5000 m for 28 d), CH + STAT3 inhibitor group (7.5 mg/kg/d), and CH + DMSO group. Microvessel density (MVD) and BM degradation in the bone marrow were determined by immunofluorescence staining and transmission electron microscopy. Serum IL-6 levels were assessed by enzyme-linked immunosorbent assay (ELISA), and the levels of P-JAK2, P-STAT3, and MMP-9 were assessed by western blot analysis and real-time reverse transcription PCR (RT-PCR). Hypoxia increased serum IL-6 levels, which in turn increased JAK2 and STAT3 phosphorylation, which subsequently upregulated MMP-9. Overexpression of MMP-9 significantly promoted the elevation of MVD and BM degradation. Inhibition of STAT3 using an inhibitor, SH-4-54, significantly downregulated MMP-9 expression and decreased MVD and BM degradation. Surprisingly, STAT3 inhibition also decreased serum IL-6 levels and JAK2 phosphorylation. Our results suggest that the IL-6/JAK2/STAT3/MMP-9 pathway might be related to CH-induced microvessel proliferation and BM degradation in the bone marrow
Comparative Analysis of PM2.5-Bound Polycyclic Aromatic Hydrocarbons (PAHs), Nitro-PAHs (NPAHs), and Water-Soluble Inorganic Ions (WSIIs) at Two Background Sites in Japan
Daily PM2.5 (particulate matter with aerodynamic diameter ≤2.5 μm) samples were simultaneously collected at two background sites (Wajima Air Monitoring Station (WAMS) and Fukue-Jima Atmosphere and Aerosol Monitoring Station (FAMS)) in Japan in the East Asian winter and summer monsoon periods of 2017 and 2019, to compare the characteristics of air pollutants among different regions and to determine the possible variation during the long-range transport process. Polycyclic aromatic hydrocarbons (PAHs), nitro-PAHs (NPAHs), and water-soluble inorganic ions (WSIIs) were analyzed. Despite the PM2.5 concentrations at FAMS (8.90–78.5 µg/m3) being higher than those at WAMS (2.33–21.2 µg/m3) in the winter monsoon period, the average concentrations of ∑PAHs, ∑NPAHs, and ∑WSIIs were similar between the two sites. Diagnostic ratios indicated PAHs mainly originated from traffic emissions and mostly aged, whereas NPAHs were mostly secondarily formed during long-range transport. WSIIs at WAMS were mainly formed via the combustion process and secondary reactions, whereas those at FAMS mainly originated from sea salt and dust. Backward trajectories revealed the air masses could not only come from Asian continental coastal regions but also distant landlocked areas in the winter monsoon period, whereas most came from the ocean in the summer monsoon period. These findings can provide basic data for the establishment of prediction models of transboundary air pollutants in East Asia
The Characteristics of Polycyclic Aromatic Hydrocarbons in Different Emission Source Areas in Shenyang, China
Particulate matter (PM) was collected in three different areas, SY-1, SY-2, and SY-3, in Shenyang, China, during the warm and cold seasons from 2012 to 2014. SY-1 was located beside a thermal power plant, far from the central area. SY-2 was near a coal heating boiler on the main road, close to the central area. SY-3 was on the main road, without fixed emission sources. Nine PM-bound polycyclic aromatic hydrocarbons (PAHs) were analyzed. The results showed that the mean concentration of total PAHs was higher in the cold season (92.6–316 ng m−3) than in the warm season (18.4–32.2 ng m−3). Five- and six-ring PAHs occupied a large percentage at all sites in the warm season, and four-ring PAHs were the dominant components in the cold season. Several diagnostic PAH ratios indicated that the main sources of PAHs in Shenyang in the warm and cold seasons were not only coal burning but also vehicle emission. In this study, we suggest that a benzo[a]pyrene/benzo[ghi]perylene ratio ([BaP]/[BgPe]) of 0.6 was a useful indicator to speculate the relative significance of coal burning and vehicle exhaust. Although the Shenyang government has undertaken actions to address air pollution, the PM and PAH concentrations did not decrease significantly compared to those in our previous studies. The cancer risk calculated from the BaP equivalent total concentration at all three sites in the warm and cold seasons exceeded the acceptable limit established by the US EPA