2 research outputs found

    Innovated Application of Mechanical Activation To Separate Lead from Scrap Cathode Ray Tube Funnel Glass

    No full text
    The disposal of scrap cathode ray tube (CRT) funnel glass has become a global environmental problem due to the rapid shrinkage of new CRT monitor demand, which greatly reduces the reuse for remanufacturing. To detoxificate CRT funnel glass by lead recovery with traditional metallurgical methods, mechanical activation by ball milling was introduced to pretreat the funnel glass. As a result, substantial physicochemical changes have been observed after mechanical activation including chemical breakage and defects formation in glass inner structure. These changes contribute to the easy dissolution of the activated sample in solution. High yield of 92.5% of lead from activated CRT funnel glass by diluted nitric acid leaching and successful formation of lead sulfide by sulfur sulfidization in water have also been achieved. All the results indicate that the application of mechanical activation on recovering lead from CRT funnel glass is efficient and promising, which is also probably appropriate to detoxificate any other kind of leaded glass

    Fabrication and Characterization of High-Quality Perovskite Films with Large Crystal Grains

    No full text
    Solution-processable organometal perovskite materials have been widely used in various kinds of devices. In these devices, the perovskite materials normally act as active layers. Grain boundaries and structural disorder in the perovskite layer would interfere the charge transport and increase recombination probability. Here we proposed a novel fabrication method to dramatically increase the crystal size by more than 20 times as compared with previously reported values. Exceptional structural order in the large crystals is illustrated by nanoscale surface morphology and a simple recrystallization method. Because of reduced grain boundaries and increased crystal order in perovskite layers, the lateral charge transport is significantly improved, as demonstrated by conductive atomic-force microscopy and performance of photodetectors. This deposition technology paves the way for future high-performance devices based on perovskite thin films
    corecore