34 research outputs found
Time evolution of the population.
Λ = 2, μ = 0.05, d = 0.9, α = 0.05, φ = 0.3, ω = 0.8, p = 0.4, q = 0.4, such that S = 30, E = 0, I+ = 5, I− = 5, R = 0, when t = 10−2.</p
Time evolution of the population.
Λ = 2, μ = 0.05, d = 0.9, α = 0.05, φ = 0.3, ω = 0.8, p = 1, q = 1, such that S = 30, E = 0, I+ = 5, I− = 5, R = 0, when t = 10−2.</p
The optimal proportion of recovery resources <i>q</i><sub>0</sub> assigned to the active informed people as a function of <i>p</i>, when <i>μ</i> = 0.01.
(a) ω = 0.6, d = 0.2. (b) ω = 0.2, d = 0.6.</p
The critical points <i>p</i><sup>(0)</sup> and <i>p</i><sup>(1)</sup> as functions of <i>ω</i> and <i>d</i>, when <i>μ</i> = 0.01.
The critical points p(0) and p(1) as functions of ω and d, when μ = 0.01.</p
(color online). The relationships of five species in the Jungle game.
<p>Arrows point from predator to prey. <i>S</i><sub>1</sub> and <i>S</i><sub>2</sub> can prey three species and be hunt by one species; <i>S</i><sub>3</sub> can prey two species and be hunt by two species; <i>S</i><sub>4</sub> and <i>S</i><sub>5</sub> can prey one species and be hunt by three species.</p
(color online) Densities of five species in Monte Carlo simulation. <i>L</i> = 200,<i>k</i><sub><i>i</i>, <i>j</i></sub> = 1.
<p>After about 500 time steps, the species <i>S</i><sub>4</sub> and <i>S</i><sub>3</sub> extinct and species <i>S</i><sub>1</sub>, <i>S</i><sub>2</sub> and <i>S</i><sub>5</sub> coexist.</p
(color online) Coexistence of species in example 1 using Monte Carlo simulation. <i>L</i> = 400.
<p>All five species coexist in the red region. Species <i>S</i><sub>1</sub><i>S</i><sub>4</sub><i>S</i><sub>5</sub> coexist in the orange region. Species <i>S</i><sub>1</sub><i>S</i><sub>2</sub><i>S</i><sub>5</sub> coexist in the light yellow region. Species <i>S</i><sub>1</sub><i>S</i><sub>3</sub><i>S</i><sub>5</sub> coexist in the deep yellow region. Only <i>S</i><sub>5</sub> remains in the green region. Only <i>S</i><sub>1</sub> or <i>S</i><sub>2</sub> remains in the blue region.</p
The area of region II in Fig 3 with different <i>p</i><sub>1</sub>.
<p>There exists <i>P</i> ≈ 1.149 making the smallest area at <i>p</i><sub>1</sub> = <i>P</i>. When <i>p</i><sub>1</sub> < <i>P</i>, the area decreases with the increasing <i>p</i><sub>1</sub>; when <i>p</i><sub>1</sub> > <i>P</i>, the area increases with the increasing <i>p</i><sub>1</sub>.</p
(color online) Densities of five species in Monte Carlo simulation. <i>L</i> = 200,<i>k</i><sub><i>i</i>, <i>j</i></sub> = 1.
<p>After about 500 time steps, the species <i>S</i><sub>4</sub> and <i>S</i><sub>3</sub> extinct and species <i>S</i><sub>1</sub>, <i>S</i><sub>2</sub> and <i>S</i><sub>5</sub> coexist.</p
