5 research outputs found
Data_Sheet_2_Plin4-Dependent Lipid Droplets Hamper Neuronal Mitophagy in the MPTP/p-Induced Mouse Model of Parkinson’s Disease.DOCX
<p>Epidemiological studies have shown that both lipid metabolism disorder and mitochondrial dysfunction are correlated with the pathogenesis of neurodegenerative diseases (NDDs), including Parkinson’s disease (PD). Emerging evidence suggests that deposition of intracellular lipid droplets (LDs) participates in lipotoxicity and precedes neurodegeneration. Perilipin family members were recognized to facilitate LD movement and cellular signaling interactions. However, the direct interaction between Perilipin-regulated LD deposition and mitochondrial dysfunction in dopaminergic (DA) neurons remains obscure. Here, we demonstrate a novel type of lipid dysregulation involved in PD progression as evidenced by upregulated expression of Plin4 (a coating protein and regulator of LDs), and increased intracellular LD deposition that correlated with the loss of TH-ir (Tyrosine hydroxylase-immunoreactive) neurons in the MPTP/p-induced PD model mouse mesencephalon. Further, in vitro experiments showed that inhibition of LD storage by downregulating Plin4 promoted survival of SH-SY5Y cells. Mechanistically, reduced LD storage restored autophagy, leading to alleviation of mitochondrial damage, which in turn promoted cell survival. Moreover, the parkin-poly-Ub-p62 pathway was involved in this Plin4/LD-induced inhibition of mitophagy. These findings were further confirmed in primary cultures of DA-nergic neurons, in which autophagy inhibitor treatment significantly countermanded the ameliorations conferred by Plin4 silencing. Collectively, these experiments demonstrate that a dysfunctional Plin4/LD/mitophagy axis is involved in PD pathology and suggest Plin4-LDs as a potential biomarker as well as therapeutic strategy for PD.</p
Polyurea–Cellulose Composite Aerogel Fibers with Superior Strength, Hydrophobicity, and Thermal Insulation via a Secondary Molding Strategy
Aerogel materials, considered as the “miracle
material that
can change the world in the 21st century”, owe their transformative
potential to their high specific surface area, porosity, and low density.
In comparison to commercially available aerogel felt, aerogel particles,
and aerogel powder, aerogel fibers not only possess the inherent advantages
of aerogel materials but also exhibit exceptional flexibility and
design versatility. Therefore, aerogel fibers are expected to be processed
into high-performance textiles and smart wearable fabrics to further
expand the application field of aerogel materials. However, the aerogel
fibers suffer from poor mechanical properties and intricate, time-consuming
preparation processes. Herein, a simple and efficient method for crafting
polyurea–cellulose composite aerogel fibers (CAFs) with superior
mechanical properties is presented. The dried bacterial cellulose
(BC) matrix was immersed in a polyurea sol, and the aerogel fibers
were prepared via secondary molding, followed by CO2 supercritical
drying. In a representative case, the CAFs obtained via secondary
molding demonstrate outstanding hydrophobicity with a contact angle
of 126°, along with remarkable flexibility. Significantly, the
CAFs exhibit excellent mechanical properties, including a tensile
strength of 6.4 MPa. Moreover, the CAFs demonstrate superior thermal
insulation capabilities, withstanding temperatures ranging from 180
to −40 °C. In conclusion, with the successful fabrication
of polyurea–cellulose CAFs, this study introduces a magic approach
for producing aerogel fibers endowed with exceptional mechanical properties
and thermal insulation. This advancement contributes to the development
and application of aerogel materials in various fields
Polyurea–Cellulose Composite Aerogel Fibers with Superior Strength, Hydrophobicity, and Thermal Insulation via a Secondary Molding Strategy
Aerogel materials, considered as the “miracle
material that
can change the world in the 21st century”, owe their transformative
potential to their high specific surface area, porosity, and low density.
In comparison to commercially available aerogel felt, aerogel particles,
and aerogel powder, aerogel fibers not only possess the inherent advantages
of aerogel materials but also exhibit exceptional flexibility and
design versatility. Therefore, aerogel fibers are expected to be processed
into high-performance textiles and smart wearable fabrics to further
expand the application field of aerogel materials. However, the aerogel
fibers suffer from poor mechanical properties and intricate, time-consuming
preparation processes. Herein, a simple and efficient method for crafting
polyurea–cellulose composite aerogel fibers (CAFs) with superior
mechanical properties is presented. The dried bacterial cellulose
(BC) matrix was immersed in a polyurea sol, and the aerogel fibers
were prepared via secondary molding, followed by CO2 supercritical
drying. In a representative case, the CAFs obtained via secondary
molding demonstrate outstanding hydrophobicity with a contact angle
of 126°, along with remarkable flexibility. Significantly, the
CAFs exhibit excellent mechanical properties, including a tensile
strength of 6.4 MPa. Moreover, the CAFs demonstrate superior thermal
insulation capabilities, withstanding temperatures ranging from 180
to −40 °C. In conclusion, with the successful fabrication
of polyurea–cellulose CAFs, this study introduces a magic approach
for producing aerogel fibers endowed with exceptional mechanical properties
and thermal insulation. This advancement contributes to the development
and application of aerogel materials in various fields
Polyurea–Cellulose Composite Aerogel Fibers with Superior Strength, Hydrophobicity, and Thermal Insulation via a Secondary Molding Strategy
Aerogel materials, considered as the “miracle
material that
can change the world in the 21st century”, owe their transformative
potential to their high specific surface area, porosity, and low density.
In comparison to commercially available aerogel felt, aerogel particles,
and aerogel powder, aerogel fibers not only possess the inherent advantages
of aerogel materials but also exhibit exceptional flexibility and
design versatility. Therefore, aerogel fibers are expected to be processed
into high-performance textiles and smart wearable fabrics to further
expand the application field of aerogel materials. However, the aerogel
fibers suffer from poor mechanical properties and intricate, time-consuming
preparation processes. Herein, a simple and efficient method for crafting
polyurea–cellulose composite aerogel fibers (CAFs) with superior
mechanical properties is presented. The dried bacterial cellulose
(BC) matrix was immersed in a polyurea sol, and the aerogel fibers
were prepared via secondary molding, followed by CO2 supercritical
drying. In a representative case, the CAFs obtained via secondary
molding demonstrate outstanding hydrophobicity with a contact angle
of 126°, along with remarkable flexibility. Significantly, the
CAFs exhibit excellent mechanical properties, including a tensile
strength of 6.4 MPa. Moreover, the CAFs demonstrate superior thermal
insulation capabilities, withstanding temperatures ranging from 180
to −40 °C. In conclusion, with the successful fabrication
of polyurea–cellulose CAFs, this study introduces a magic approach
for producing aerogel fibers endowed with exceptional mechanical properties
and thermal insulation. This advancement contributes to the development
and application of aerogel materials in various fields
Polyurea–Cellulose Composite Aerogel Fibers with Superior Strength, Hydrophobicity, and Thermal Insulation via a Secondary Molding Strategy
Aerogel materials, considered as the “miracle
material that
can change the world in the 21st century”, owe their transformative
potential to their high specific surface area, porosity, and low density.
In comparison to commercially available aerogel felt, aerogel particles,
and aerogel powder, aerogel fibers not only possess the inherent advantages
of aerogel materials but also exhibit exceptional flexibility and
design versatility. Therefore, aerogel fibers are expected to be processed
into high-performance textiles and smart wearable fabrics to further
expand the application field of aerogel materials. However, the aerogel
fibers suffer from poor mechanical properties and intricate, time-consuming
preparation processes. Herein, a simple and efficient method for crafting
polyurea–cellulose composite aerogel fibers (CAFs) with superior
mechanical properties is presented. The dried bacterial cellulose
(BC) matrix was immersed in a polyurea sol, and the aerogel fibers
were prepared via secondary molding, followed by CO2 supercritical
drying. In a representative case, the CAFs obtained via secondary
molding demonstrate outstanding hydrophobicity with a contact angle
of 126°, along with remarkable flexibility. Significantly, the
CAFs exhibit excellent mechanical properties, including a tensile
strength of 6.4 MPa. Moreover, the CAFs demonstrate superior thermal
insulation capabilities, withstanding temperatures ranging from 180
to −40 °C. In conclusion, with the successful fabrication
of polyurea–cellulose CAFs, this study introduces a magic approach
for producing aerogel fibers endowed with exceptional mechanical properties
and thermal insulation. This advancement contributes to the development
and application of aerogel materials in various fields