20 research outputs found

    Targeting Microglia and Macrophages: A Potential Treatment Strategy for Multiple Sclerosis

    Get PDF
    Multiple sclerosis (MS) is a chronic inflammatory neurodegenerative disease of the central nervous system (CNS). The early stage is characterized by relapses and the later stage, by progressive disability. Results from experimental and clinical investigations have demonstrated that microglia and macrophages play a key part in the disease course. These cells actively initiate immune infiltration and the demyelination cascade during the early phase of the disease; however, they promote remyelination and alleviate disease in later stages. This review aims to provide a comprehensive overview of the existing knowledge regarding the neuromodulatory function of macrophages and microglia in the healthy and injured CNS, and it discusses the feasibility of harnessing microglia and macrophage physiology to treat MS. The review encourages further investigations into macrophage-targeted therapy, as well as macrophage-based drug delivery, for realizing efficient treatment strategies for MS

    Suppression of Hypoxia-Inducible Factor 1α (HIF-1α) by Tirapazamine Is Dependent on eIF2α Phosphorylation Rather Than the mTORC1/4E-BP1 Pathway

    Get PDF
    Hypoxia-inducible factor 1 (HIF-1), a heterodimeric transcription factor that mediates the adaptation of tumor cells and tissues to the hypoxic microenvironment, has attracted considerable interest as a potential therapeutic target. Tirapazamine (TPZ), a well-characterized bioreductive anticancer agent, is currently in Phase II and III clinical trials. A major aspect of the anticancer activity of TPZ is its identity as a tumor-specific topoisomerase IIα inhibitor. In the study, for the first time, we found that TPZ acts in a novel manner to inhibit HIF-1α accumulation driven by hypoxia or growth factors in human cancer cells and in HepG2 cell-derived tumors in athymic nude mice. We investigated the mechanism of TPZ on HIF-1α in HeLa human cervical cancer cells by western blot analysis, reverse transcription-PCR assay, luciferase reporter assay and small interfering RNA (siRNA) assay. Mechanistic studies demonstrated that neither HIF-1α mRNA levels nor HIF-1α protein degradation are affected by TPZ. However, TPZ was found to be involved in HIF-1α translational regulation. Further studies revealed that the inhibitory effect of TPZ on HIF-1α protein synthesis is dependent on the phosphorylation of translation initiation factor 2α (eIF2α) rather than the mTOR complex 1/eukaryotic initiation factor 4E-binding protein-1 (mTORC1/4E-BP1) pathway. Immunofluorescence analysis of tumor sections provide the in vivo evidences to support our hypothesis. Additionally, siRNA specifically targeting topoisomerase IIα did not reverse the ability of TPZ to inhibit HIF-1α expression, suggesting that the HIF-1α inhibitory activity of TPZ is independent of its topoisomerase IIα inhibition. In conclusion, our findings suggest that TPZ is a potent regulator of HIF-1α and provide new insight into the potential molecular mechanism whereby TPZ serves to reduce HIF-1α expression

    Dual regulatory switch through interactions of Tcf7l2/Tcf4 with stage-specific partners propels oligodendroglial maturation

    Get PDF
    Constitutive activation of Wnt/β-catenin inhibits oligodendrocyte myelination. Tcf7l2/Tcf4, a β-catenin transcriptional partner, is required for oligodendrocyte differentiation. How Tcf7l2 modifies β-catenin signalling and controls myelination remains elusive. Here we define a stage-specific Tcf7l2-regulated transcriptional circuitry in initiating and sustaining oligodendrocyte differentiation. Multistage genome occupancy analyses reveal that Tcf7l2 serially cooperates with distinct co-regulators to control oligodendrocyte lineage progression. At the differentiation onset, Tcf7l2 interacts with a transcriptional co-repressor Kaiso/Zbtb33 to block β-catenin signalling. During oligodendrocyte maturation, Tcf7l2 recruits and cooperates with Sox10 to promote myelination. In that context, Tcf7l2 directly activates cholesterol biosynthesis genes and cholesterol supplementation partially rescues oligodendrocyte differentiation defects in Tcf712 mutants. Together, we identify stage-specific co-regulators Kaiso and Sox10 that sequentially interact with Tcf7l2 to coordinate the switch at the transitions of differentiation initiation and maturation during oligodendrocyte development, and point to a previously unrecognized role of Tcf7l2 in control of cholesterol biosynthesis for CNS myelinogenesis

    Dual-Mode Modulation of Smad Signaling by Smad-Interacting Protein Sip1 Is Required for Myelination in the Central Nervous System

    Get PDF
    SummaryMyelination by oligodendrocytes in the central nervous system (CNS) is essential for proper brain function, yet the molecular determinants that control this process remain poorly understood. The basic helix-loop-helix transcription factors Olig1 and Olig2 promote myelination, whereas bone morphogenetic protein (BMP) and Wnt/β-catenin signaling inhibit myelination. Here we show that these opposing regulators of myelination are functionally linked by the Olig1/2 common target Smad-interacting protein-1 (Sip1). We demonstrate that Sip1 is an essential modulator of CNS myelination. Sip1 represses differentiation inhibitory signals by antagonizing BMP receptor-activated Smad activity while activating crucial oligodendrocyte-promoting factors. Importantly, a key Sip1-activated target, Smad7, is required for oligodendrocyte differentiation and partially rescues differentiation defects caused by Sip1 loss. Smad7 promotes myelination by blocking the BMP- and β-catenin-negative regulatory pathways. Thus, our findings reveal that Sip1-mediated antagonism of inhibitory signaling is critical for promoting CNS myelination and point to new mediators for myelin repair

    ALS-Associated E478G Mutation in Human OPTN (Optineurin) Promotes Inflammation and Induces Neuronal Cell Death

    Get PDF
    Amyotrophic Lateral Sclerosis (ALS) is a group of neurodegenerative disorders that featured with the death of motor neurons, which leads to loss of voluntary control on muscles. The etiologies vary among different subtypes of ALS, and no effective management or medication could be provided to the patients, with the underlying mechanisms incompletely understood yet. Mutations in human Optn (Optineurin), particularly E478G, have been found in many ALS patients. In this work, we report that NF-κB activity was increased in Optn knockout (Optn−/−) MEF (mouse embryonic fibroblast) cells expressing OPTN of different ALS-associated mutants especially E478G. Inflammation was significantly activated in mice infected with lenti-virus that allowed overexpression of OPTNE478G mutation in the motor cortex, with marked increase in the secretion of pro-inflammatory cytokines as well as neuronal cell death. Our work with both cell and animal models strongly suggested that anti-inflammation treatment could represent a powerful strategy to intervene into disease progression in ALS patients who possess the distinctive mutations in OPTN gene

    First case report of PLA2R-related monotypic (IgG-κ positive) membranous nephropathy concurrent with leukocyte chemotactic factor 2 amyloidosis

    No full text
    Abstract Background Membranous nephropathy (MN) is a major pattern of nephrotic syndrome (NS) in adults. Some MN have secondary causes and some may be accompanied with other glomerular diseases. MN patients coexisting with amyloidosis are very rare, and mostly was polytypic MN. Herein, we describe the first report which identifying monotype PLA2R-MN (κ light chain) concurrent with leukocyte chemotactic factor 2 amyloidosis (ALECT2). This rare case highlights the importance of renal pathology for diagnosis. Case presentation We describe a case of a 60-year-old male patient with persistent proteinuria and low serum albumin for nine months. No monoclonal component was revealed by serum and urine immunofixation electrophoresis but serum PLA2R antibody was positive. The patient was empirically treated with Leflunomide and Losartan, but edema was not improved. The diagnosis of renal pathology is PLA2R-related monotypic (IgG-κ positive) MN concurrent with ALECT2. Methylprednisolone, cyclosporine A and anticoagulant (rivaroxaban) were prescribed resulting in a complete remission of NS. Conclusions MN patients concurrent with ALECT2 presented massive proteinuria or NS. When nephrotic range proteinuria is present in ALECT2, it is important to consider that it may be due to a concomitant underlying nephropathy especially MN and treated according to MN will get good therapeutic effect

    Simultaneous Quantification and Pharmacokinetic Study of Five Homologs of Dalbavancin in Rat Plasma Using UHPLC-MS/MS

    No full text
    Dalbavancin is a novel semisynthetic glycopeptide antibiotic that comprises multiple homologs and isomers of similar polarities. However, pharmacokinetic studies have only analyzed the primary components of dalbavancin, namely B0 and B1. In this study, an ultra-high-performance liquid chromatography-tandem mass spectrometry (UHPLC-MS/MS) method was developed to simultaneously determinate and investigate the five homologous components of dalbavancin, namely, A0, A1, B0, B1, and B2, in rat plasma. In this method, methanol was used to precipitate plasma, and a triple-bonded alkyl chromatographic column was used for molecule separation, using 0.1% formic acid-acetonitrile as the mobile phase for gradient elution. Targeted homologs were analyzed by a triple quadrupole mass spectrometer using positive electrospray ionization in multiple reaction monitoring mode. The linearity range was 50–2500 ng/mL with a high correlation coefficient (r2 > 0.998). This method was successfully applied in the pharmacokinetic analysis of dalbavancin hydrochloride to investigate dalbavancin components in rats

    An Efficient UPLC-MS/MS Method for the Determination of Pyrroloquinoline Quinone in Rat Plasma and Its Application to a Toxicokinetic Study

    No full text
    Pyrroloquinoline quinone (PQQ) is a powerful antioxidant coenzyme existing in diet, benefiting growth, development, cognition function, and the repair of damaged organs. However, a method for detecting PQQ in vivo was rarely described, limiting the research on the bioanalysis and metabolic properties of PQQ. In this study, a novel, simple, and efficient ultra-high performance liquid chromatography/tandem mass spectrometry (UPLC-MS/MS) method was developed and validated to quantify the concentration of PQQ in rat plasma. Detection through mass spectrometry was operated by multiple reaction monitoring (MRM) in negative electrospray ionization mode with ion transitions m/z 328.99→197.05 for PQQ and m/z 280.04→195.04 for the internal standard. The calibration curves were linear up to 10,000 ng/mL, with a lower limit of quantitation of 10 ng/mL. Inter-run and intra-run precision ranged from 1.79% to 10.73% and accuracy ranged from −7.73% to 7.30%. The method was successfully applied to a toxicokinetic study in Sprague–Dawley rats after the oral administration of PQQ disodium salt at doses of 250 mg/kg, 500 mg/kg, and 1000 mg/kg. The toxicokinetic parameters were subsequently analyzed, which may provide valuable references for the toxicokinetic properties and safety evaluation of PQQ
    corecore