14 research outputs found

    Student demands extracted from MOOC review data.

    No full text
    Higher vocational education is the core component of China’s national education system and shoulders the mission of cultivating high-skilled and applied talents. The wide application of Massive Open Online Courses (MOOCs) has effectively improved the curriculum system of China’s higher vocational education. In the meantime, some MOOCs suffer from poor course quality. Therefore, from the perspective of sustainable course quality improvement, we propose a data-driven framework for mining and analyzing student reviews in China’s higher vocational education MOOCs. In our framework, we first mine multi-level student demands hidden in MOOC reviews by combining web crawlers and text mining. Then we use an artificial neural network and the KANO model to classify the extracted student demands, thereby designing effective and sustainable MOOC quality improvement strategies. Based on the real data from China’s higher vocational education MOOCs, we validate the effectiveness of the proposed data-driven framework.</div

    The sentiment polarity of student demands in MOOC reviews.

    No full text
    The sentiment polarity of student demands in MOOC reviews.</p

    Relationship map of student demands.

    No full text
    Higher vocational education is the core component of China’s national education system and shoulders the mission of cultivating high-skilled and applied talents. The wide application of Massive Open Online Courses (MOOCs) has effectively improved the curriculum system of China’s higher vocational education. In the meantime, some MOOCs suffer from poor course quality. Therefore, from the perspective of sustainable course quality improvement, we propose a data-driven framework for mining and analyzing student reviews in China’s higher vocational education MOOCs. In our framework, we first mine multi-level student demands hidden in MOOC reviews by combining web crawlers and text mining. Then we use an artificial neural network and the KANO model to classify the extracted student demands, thereby designing effective and sustainable MOOC quality improvement strategies. Based on the real data from China’s higher vocational education MOOCs, we validate the effectiveness of the proposed data-driven framework.</div

    Student demand classification method based on the KANO model.

    No full text
    Student demand classification method based on the KANO model.</p

    The accuracy as the training of the neural network.

    No full text
    The accuracy as the training of the neural network.</p

    Example of the <i>n</i>-th demand for MOOCs.

    No full text
    Higher vocational education is the core component of China’s national education system and shoulders the mission of cultivating high-skilled and applied talents. The wide application of Massive Open Online Courses (MOOCs) has effectively improved the curriculum system of China’s higher vocational education. In the meantime, some MOOCs suffer from poor course quality. Therefore, from the perspective of sustainable course quality improvement, we propose a data-driven framework for mining and analyzing student reviews in China’s higher vocational education MOOCs. In our framework, we first mine multi-level student demands hidden in MOOC reviews by combining web crawlers and text mining. Then we use an artificial neural network and the KANO model to classify the extracted student demands, thereby designing effective and sustainable MOOC quality improvement strategies. Based on the real data from China’s higher vocational education MOOCs, we validate the effectiveness of the proposed data-driven framework.</div

    The loss as the training of the neural network.

    No full text
    Higher vocational education is the core component of China’s national education system and shoulders the mission of cultivating high-skilled and applied talents. The wide application of Massive Open Online Courses (MOOCs) has effectively improved the curriculum system of China’s higher vocational education. In the meantime, some MOOCs suffer from poor course quality. Therefore, from the perspective of sustainable course quality improvement, we propose a data-driven framework for mining and analyzing student reviews in China’s higher vocational education MOOCs. In our framework, we first mine multi-level student demands hidden in MOOC reviews by combining web crawlers and text mining. Then we use an artificial neural network and the KANO model to classify the extracted student demands, thereby designing effective and sustainable MOOC quality improvement strategies. Based on the real data from China’s higher vocational education MOOCs, we validate the effectiveness of the proposed data-driven framework.</div

    The KANO model for MOOCs in higher vocational education.

    No full text
    The KANO model for MOOCs in higher vocational education.</p

    Classification results for the student demands.

    No full text
    Higher vocational education is the core component of China’s national education system and shoulders the mission of cultivating high-skilled and applied talents. The wide application of Massive Open Online Courses (MOOCs) has effectively improved the curriculum system of China’s higher vocational education. In the meantime, some MOOCs suffer from poor course quality. Therefore, from the perspective of sustainable course quality improvement, we propose a data-driven framework for mining and analyzing student reviews in China’s higher vocational education MOOCs. In our framework, we first mine multi-level student demands hidden in MOOC reviews by combining web crawlers and text mining. Then we use an artificial neural network and the KANO model to classify the extracted student demands, thereby designing effective and sustainable MOOC quality improvement strategies. Based on the real data from China’s higher vocational education MOOCs, we validate the effectiveness of the proposed data-driven framework.</div

    Data-driven framework for mining and analyzing MOOC reviews.

    No full text
    Data-driven framework for mining and analyzing MOOC reviews.</p
    corecore