2 research outputs found

    Controllable Synthesis of Two-Dimensional Ruddlesden–Popper-Type Perovskite Heterostructures

    No full text
    Two-dimensional Ruddlesden–Popper type perovskites (2D perovskites) have recently attracted increasing attention. It is expected that 2D perovskite-based heterostructures can significantly improve the efficiency of the optoelectronic devices and extend the material functionalities; however, rational synthesis of such heterostructures has not been realized to date. We report on a general low-temperature synthetic strategy for the synthesis of 2D perovskite-based lateral and vertical (<i>n</i>-CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>PbI<sub>4</sub>/(<i>n</i>-CH<sub>3</sub>(CH<sub>2</sub>)<sub>3</sub>NH<sub>3</sub>)<sub>2</sub>(CH<sub>3</sub>NH<sub>3</sub>)­Pb<sub>2</sub>I<sub>7</sub> heterostructures for the first time. A combination of solution synthesis and gas–solid phase intercalation approach allows us to efficiently synthesize both lateral and vertical heterostructures with great flexibility. X-ray diffraction, photoluminescence, and photoluminescence excitation mapping and electrical transport measurement studies reveal the successful synthesis of lateral and vertical heterostructures with precisely spatial-modulation control and distinguishable interfaces. Our studies not only provide an efficient synthetic strategy with great flexibility, enabling us to create 2D perovskite-based heterostructures, but also offer a platform to investigate the physical processes in those heterostructures

    Anomalous Pressure Characteristics of Defects in Hexagonal Boron Nitride Flakes

    No full text
    Research on hexagonal boron nitride (hBN) has been intensified recently due to the application of hBN as a promising system of single-photon emitters. To date, the single photon origin remains under debate even though many experiments and theoretical calculations have been performed. We have measured the pressure-dependent photoluminescence (PL) spectra of hBN flakes at low temperatures by using a diamond anvil cell device. The absolute values of the pressure coefficients of discrete PL emission lines are all below 15 meV/GPa, which is much lower than the pressure-induced 36 meV/GPa redshift rate of the hBN bandgap. These PL emission lines originate from atom-like localized defect levels confined within the bandgap of the hBN flakes. Interestingly, the experimental results of the pressure-dependent PL emission lines present three different types of pressure responses corresponding to a redshift (negative pressure coefficient), a blueshift (positive pressure coefficient), or even a sign change from negative to positive. Density functional theory calculations indicate the existence of competition between the intralayer and interlayer interaction contributions, which leads to the different pressure-dependent behaviors of the PL peak shift
    corecore