72 research outputs found

    CEIoT: A Framework for Interlinking Smart Things in the Internet of Things

    Get PDF
    In the emerging Internet of Things (IoT) environment, things are interconnected but not interlinked. Interlinking relevant things offers great opportunities to discover implicit relationships and enable potential interactions among things. To achieve this goal, implicit correlations between things need to be discovered. However, little work has been done on this important direction and the lack of correlation discovery has inevitably limited the power of interlinking things in IoT. With the rapidly growing number of things that are connected to the Internet, there are increasing needs for correlations formation and discovery so as to support interlinking relevant things together effectively. In this paper, we propose a novel approach based on Multi-Agent Systems (MAS) architecture to extract correlations between smart things. Our MAS system is able to identify correlations on demand due to the autonomous behaviors of object agents. Specifically, we introduce a novel open-sourced framework, namely CEIoT, to extract correlations in the context of IoT. Based on the attributes of things our IoT dataset, we identify three types of correlations in our system and propose a new approach to extract and represent the correlations between things. We implement our architecture using Java Agent Development Framework (JADE) and conduct experimental studies on both synthetic and real-world datasets. The results demonstrate that our approach can extract the correlations at a much higher speed than the naive pairwise computation method

    Edge Influence Computation in Dynamic Graphs

    Get PDF
    Reachability queries are of great importance in many research and application areas, including general graph mining, social network analysis and so on. Many approaches have been proposed to compute whether there exists one path from one node to another node in a graph. Most of these approaches focus on static graphs, however in practice dynamic graphs are more common. In this paper, we focus on handling graph reachability queries in dynamic graphs. Specifically we investigate the influence of a given edge in the graph, aiming to study the overall reachability changes in the graph brought by the possible failure/deletion of the edge. To this end, we firstly develop an efficient update algorithm for handling edge deletions. We then define the edge influence concept and put forward a novel computation algorithm to accelerate the computation of edge influence. We evaluate our approach using several real world datasets. The experimental results show that our approach outperforms traditional approaches significantly

    Automatic Text Summarization Using Fuzzy Inference

    Get PDF
    Due to the high volume of information and electronic documents on the Web, it is almost impossible for a human to study, research and analyze this volume of text. Summarizing the main idea and the major concept of the context enables the humans to read the summary of a large volume of text quickly and decide whether to further dig into details. Most of the existing summarization approaches have applied probability and statistics based techniques. But these approaches cannot achieve high accuracy. We observe that attention to the concept and the meaning of the context could greatly improve summarization accuracy, and due to the uncertainty that exists in the summarization methods, we simulate human like methods by integrating fuzzy logic with traditional statistical approaches in this study. The results of this study indicate that our approach can deal with uncertainty and achieve better results when compared with existing methods

    Fog computing for sustainable smart cities: a survey

    Get PDF
    The Internet of Things (IoT) aims to connect billions of smart objects to the Internet, which can bring a promising future to smart cities. These objects are expected to generate large amounts of data and send the data to the cloud for further processing, specially for knowledge discovery, in order that appropriate actions can be taken. However, in reality sensing all possible data items captured by a smart object and then sending the complete captured data to the cloud is less useful. Further, such an approach would also lead to resource wastage (e.g. network, storage, etc.). The Fog (Edge) computing paradigm has been proposed to counterpart the weakness by pushing processes of knowledge discovery using data analytics to the edges. However, edge devices have limited computational capabilities. Due to inherited strengths and weaknesses, neither Cloud computing nor Fog computing paradigm addresses these challenges alone. Therefore, both paradigms need to work together in order to build an sustainable IoT infrastructure for smart cities. In this paper, we review existing approaches that have been proposed to tackle the challenges in the Fog computing domain. Specifically, we describe several inspiring use case scenarios of Fog computing, identify ten key characteristics and common features of Fog computing, and compare more than 30 existing research efforts in this domain. Based on our review, we further identify several major functionalities that ideal Fog computing platforms should support and a number of open challenges towards implementing them, so as to shed light on future research directions on realizing Fog computing for building sustainable smart cities

    SECF: Improving SPARQL Querying Performance with Proactive Fetching and Caching

    Get PDF
    Querying on SPARQL endpoints may be unsatisfactory due to high latency of connections to the endpoints. Caching is an important way to accelerate the query response speed. In this paper, we propose SPARQL Endpoint Caching Framework (SECF), a client-side caching framework for this purpose. In particular, we prefetch and cache the results of similar queries to recently cached query aiming to improve the overall querying performance. The similarity between queries are calculated via an improved Graph Edit Distance (GED) function. We also adapt a smoothing method to implement the cache replacement. The empirical evaluations on real world queries show that our approach has great potential to enhance the cache hit rate and accelerate the querying speed on SPARQL endpoints

    Privacy-preserving distributed service recommendation based on locality-sensitive hashing

    Get PDF
    With the advent of IoT (Internet of Things) age, considerable web services are emerging rapidly in service communities, which places a heavy burden on the target users’ service selection decisions. In this situation, various techniques, e.g., collaborative filtering (i.e., CF) is introduced in service recommendation to alleviate the service selection burden. However, traditional CF-based service recommendation approaches often assume that the historical user-service quality data is centralized, while neglect the distributed recommendation situation. Generally, distributed service recommendation involves inevitable message communication among different parties and hence, brings challenging efficiency and privacy concerns. In view of this challenge, a novel privacy-preserving distributed service recommendation approach based on Locality-Sensitive Hashing (LSH), i.e., DistSRLSH is put forward in this paper. Through LSH, DistSRLSH can achieve a good tradeoff among service recommendation accuracy, privacy-preservation and efficiency in distributed environment. Finally, through a set of experiments deployed on WS-DREAM dataset, we validate the feasibility of our proposal in handling distributed service recommendation problems
    • …