9,217 research outputs found
Clustering with diversity
We consider the {\em clustering with diversity} problem: given a set of
colored points in a metric space, partition them into clusters such that each
cluster has at least points, all of which have distinct colors.
We give a 2-approximation to this problem for any when the objective
is to minimize the maximum radius of any cluster. We show that the
approximation ratio is optimal unless , by providing a matching
lower bound. Several extensions to our algorithm have also been developed for
handling outliers. This problem is mainly motivated by applications in
privacy-preserving data publication.Comment: Extended abstract accepted in ICALP 2010. Keywords: Approximation
algorithm, k-center, k-anonymity, l-diversit
- β¦