173 research outputs found
Anisotropic intrinsic lattice thermal conductivity of phosphorene from first principles
Phosphorene, the single layer counterpart of black phosphorus, is a novel
two-dimensional semiconductor with high carrier mobility and a large
fundamental direct band gap, which has attracted tremendous interest recently.
Its potential applications in nano-electronics and thermoelectrics call for a
fundamental study of the phonon transport. Here, we calculate the intrinsic
lattice thermal conductivity of phosphorene by solving the phonon Boltzmann
transport equation (BTE) based on first-principles calculations. The thermal
conductivity of phosphorene at is
(zigzag) and
(armchair), showing an obvious anisotropy along different directions. The
calculated thermal conductivity fits perfectly to the inverse relation with
temperature when the temperature is higher than Debye temperature (). In comparison to graphene, the minor contribution around
of the ZA mode is responsible for the low thermal conductivity of
phosphorene. In addition, the representative mean free path (MFP), a critical
size for phonon transport, is also obtained.Comment: 5 pages and 6 figures, Supplemental Material available as
http://www.rsc.org/suppdata/cp/c4/c4cp04858j/c4cp04858j1.pd
Diverse Thermal Transport Properties of Two-Dimensional Materials: A Comparative Review
The discovery of graphene led to an upsurge in exploring two-dimensional (2D) materials, such as silicene, germanene, phosphorene, hexagonal boron nitride (h-BN), and transition metal dichalcogenides (TMDCs), which have attracted tremendous attention due to their unique dimension-dependent properties in the applications of nanoelectronics, optoelectronics, and thermoelectrics. The phonon transport properties governing the heat energy transfer have become a crucial issue for continuing progress in the electronic industry. This chapter reviews the state-of-the-art theoretical and experimental investigations of phonon transport properties of broad 2D nanostructures in various forms, with graphene, silicene and phosphorene as representatives, all of which consist of single element. Special attention is given to the effect of different physical factors, such as sample size, strain, and layer thickness. The effect of substrate and the phonon transport properties in heterostructures are also discussed. We find that the phonon transport properties of 2D materials largely depend on their atomic structure and interatomic bonding nature, showing a diverse intrinsic phonon behavior and disparate response to external environment
Diverse anisotropy of phonon transport in two-dimensional IV-VI compounds: A comparative study
New classes two-dimensional (2D) materials beyond graphene, including layered
and non-layered, and their heterostructures, are currently attracting
increasing interest due to their promising applications in nanoelectronics,
optoelectronics and clean energy, where thermal transport property is one of
the fundamental physical parameters. In this paper, we systematically
investigated the phonon transport properties of 2D orthorhombic group IV-VI
compounds of , , and by solving the Boltzmann transport
equation (BTE) based on first-principles calculations. Despite the similar
puckered (hinge-like) structure along the armchair direction as phosphorene,
the four monolayer compounds possess diverse anisotropic properties in many
aspects, such as phonon group velocity, Young's modulus and lattice thermal
conductivity (), etc. Especially, the along the zigzag and
armchair directions of monolayer shows the strongest anisotropy while
monolayer and shows an almost isotropy in phonon transport. The
origin of the diverse anisotropy is fully studied and the underlying mechanism
is discussed in detail. With limited size, the could be effectively
lowered, and the anisotropy could be effectively modulated by nanostructuring,
which would extend the applications in nanoscale thermoelectrics and thermal
management. Our study offers fundamental understanding of the anisotropic
phonon transport properties of 2D materials, and would be of significance for
further study, modulation and aplications in emerging technologies.Comment: 14 pages, 8 figures, 2 table
Methodology for determining the electronic thermal conductivity of metals via direct non-equilibrium ab initio molecular dynamics
Many physical properties of metals can be understood in terms of the free
electron model, as proven by the Wiedemann-Franz law. According to this model,
electronic thermal conductivity () can be inferred from the
Boltzmann transport equation (BTE). However, the BTE does not perform well for
some complex metals, such as Cu. Moreover, the BTE cannot clearly describe the
origin of the thermal energy carried by electrons or how this energy is
transported in metals. The charge distribution of conduction electrons in
metals is known to reflect the electrostatic potential (EP) of the ion cores.
Based on this premise, we develop a new methodology for evaluating
by combining the free electron model and non-equilibrium ab
initio molecular dynamics (NEAIMD) simulations. We demonstrate that the kinetic
energy of thermally excited electrons originates from the energy of the spatial
electrostatic potential oscillation (EPO), which is induced by the thermal
motion of ion cores. This method directly predicts the of pure
metals with a high degree of accuracy.Comment: 7 pages, 3 figures, with Supplementary Information of 19 pages, 7
figures and 7 table
- …