3 research outputs found

    Effect of γ‑Ray-Radiation-Modified Graphene Oxide on the Integrated Mechanical Properties of PET Blends

    No full text
    The surface modification of graphene oxide (GO) determines the interactions between GO and polymers, which possibly produces a significant impact on the mechanical properties of polymer. Here, GO was first modified with poly­(glycidyl methacrylate) (PGMA) and triethylenetetramine (TTA) through γ-ray radiation. Then, a tiny small amount (0.04%) of the prepared modified GO was filled with a PET/ethylene-methyl acrylate-glycidyl methacrylate random terpolymer (PET/ST2000) blend. The morphological analyses on these filled PET blends confirmed that the surface chemical structure of GO had a crucial impact on the mechanical property of the blend. The chemical bonding between GO and ST2000 was more efficient in improving the dispersibility of GO and the compatibility between PET and ST2000, leading to a 2.5-fold increase in the impact strength, along with a slight increase in tensile strength. However, the addition of reduced GO lacking polar groups caused fatal damage in the mechanical property of the blend

    Proton Probability Distribution in the O···H···O Low-Barrier Hydrogen Bond: A Combined Solid-State NMR and Quantum Chemical Computational Study of Dibenzoylmethane and Curcumin

    No full text
    We report a combined solid-state (1H, 2H, 13C, 17O) NMR and plane-wave density functional theory (DFT) computational study of the O···H···O low-barrier hydrogen bonds (LBHBs) in two 1,3-diketone compounds: dibenzoylmethane (1) and curcumin (2). In the solid state, both 1 and 2 exist in the cis-keto–enol tautomeric form, each exhibiting an intramolecular LBHB with a short O···O distance (2.435 Å in 1 and 2.455 Å in 2). Whereas numerous experimental (structural and spectroscopic) and computational studies have been reported for the enol isomers of 1,3-diketones, a unified picture about the proton location within an LBHB is still lacking. This work reports for the first time the solid-state 17O NMR data for the O···H···O LBHBs in 1,3-diketones. The central conclusion of this work is that detailed information about the probability density distribution of the proton (nuclear zero-point motion) across an LBHB can be obtained from a combination of solid-state NMR and plane-wave DFT computations (both NMR parameter calculations and ab initio molecular dynamics simulations). We propose that the precise proton probability distribution across an LBHB should provide a common basis on which different and sometimes seemingly contradicting experimental results obtained from complementary techniques, such as X-ray diffraction, neutron diffraction, and solid-state NMR, can be reconciled

    Mechanochemistry in Sodium Thioantimonate Solid Electrolytes: Effects on Structure, Morphology, and Electrochemical Performance

    No full text
    Sodium thioantimonate (Na3SbS4) and its W-substituted analogue Na2.88Sb0.88W0.12S4 have been identified as potential electrolyte materials for all-solid-state sodium batteries due to their high Na+ conductivity. Ball milling mechanochemistry is a frequently employed synthetic approach to produce such Na+-conductive solid solutions; however, changes in the structure and morphology introduced in these systems via the mechanochemistry process are poorly understood. Herein, we combined X-ray absorption fine structure spectroscopy, Raman spectroscopy, solid-state nuclear magnetic resonance spectroscopy, powder X-ray diffraction, X-ray photoelectron spectroscopy and scanning electron microscopy characterization techniques to provide an in-depth analysis of these solid electrolytes. We report unique changes seen in the structure and morphology of Na3SbS4 and Na2.88Sb0.88W0.12S4 resulting from ball milling, inducing changes in the electrochemical performance of the solid-state batteries. Specifically, we observed a tetragonal-to-cubic crystal phase transition within Na3SbS4 following the ball mill, resulting in an increase in Na+ conductivity. In contrast, the Na+ conductivity was reduced in mechanochemically treated Na2.88Sb0.88W0.12S4 due to the formation and accumulation of a WS2 phase. In addition, mechanochemical treatment alters the surface morphology of densified Na2.88Sb0.88W0.12S4 pellets, providing intimate contact at the solid electrolyte/Na interface. This phenomenon was not observed in Na3SbS4. This work reveals the structural and morphological origin of the changes seen in these materials’ electrochemical performance and how mechanochemical synthesis can introduce them
    corecore