3 research outputs found

    Recoverable facial identity protection via adaptive makeup transfer adversarial attacks

    No full text
    Unauthorised face recognition (FR) systems have posed significant threats to digital identity and privacy protection. To alleviate the risk of compromised identities, recent makeup transfer-based attack methods embed adversarial signals in order to confuse unauthorised FR systems. However, their major weakness is that they set up a fixed image unrelated to both the protected and the makeup reference images as the confusion identity, which in turn has a negative impact on both attack success rate and visual quality of transferred photos. In addition, the generated images cannot be recognised by authorised FR systems once attacks are triggered. To ad- dress these challenges, in this paper, we propose a Recoverable Makeup Transferred Generative Adversarial Network (RMT-GAN) which has the distinctive feature of improving its image-transfer quality by selecting a suitable transfer reference photo as the target identity. Moreover, our method offers a solution to recover the protected photos to their original counterparts that can be recognised by authorised systems. Experimental results demonstrate that our method provides significantly improved attack success rates while maintaining higher visual quality compared to state-of-the-art makeup transfer-based adversarial attack methods.</p

    MOF–Thermogel Composites for Differentiated and Sustained Dual Drug Delivery

    No full text
    In recent years, multidrug therapy has gained increasing popularity due to the possibility of achieving synergistic drug action and sequential delivery of different medical payloads for enhanced treatment efficacy. While a number of composite material release platforms have been developed, few combine the bottom-up design versatility of metal–organic frameworks (MOFs) to tailor drug release behavior, with the convenience of temperature-responsive hydrogels (or thermogels) in their unique ease of administration and formulation. Yet, despite their potential, MOF–thermogel composites have been largely overlooked for simultaneous multidrug delivery. Herein, we report the first systematic study of common MOFs (UiO-66, MIL-53(Al), MIL-100(Fe), and MOF-808) with different pore sizes, geometries, and hydrophobicities for their ability to achieve simultaneous dual drug release when embedded within PEG-containing thermogel matrices. After establishing that MOFs exert small influences on the rheological properties of the thermogels despite the penetration of polymers into the MOF pores in solution, the release profiles of ibuprofen and caffeine as model hydrophobic and hydrophilic drugs, respectively, from MOF–thermogel composites were investigated. Through these studies, we elucidated the important role of hydrophobic matching between MOF pores and loaded drugs in order for the MOF component to distinctly influence drug release kinetics. These findings enabled us to identify a viable MOF–thermogel composite containing UiO-66 that showed vastly different release kinetics between ibuprofen and caffeine, enabling temporally differentiated yet sustained simultaneous drug release to be achieved. Finally, the MOF–thermogel composites were shown to be noncytotoxic in vitro, paving the way for these underexploited composite materials to find possible clinical applications for multidrug therapy

    Electrospun Pectin-Polyhydroxybutyrate Nanofibers for Retinal Tissue Engineering

    No full text
    Natural polysaccharide pectin has for the first time been grafted with polyhydroxybutyrate (PHB) via ring-opening polymerization of β-butyrolactone. This copolymer, pectin-polyhydroxybutyrate (pec-PHB), was blended with PHB in various proportions and electrospun to produce nanofibers that exhibited uniform and bead-free nanostructures, suggesting the miscibility of PHB and pec-PHB. These nanofiber blends exhibited reduced fiber diameters from 499 to 336–426 nm and water contact angles from 123.8 to 88.2° on incorporation of pec-PHB. They also displayed 39–335% enhancement of elongation at break relative to pristine PHB nanofibers. pec-PHB nanofibers were found to be noncytotoxic and biocompatible. Human retinal pigmented epithelium (ARPE-19) cells were seeded onto pristine PHB and pec-PHB nanofibers as scaffold and showed good proliferation. Higher proportions of pec-PHB (pec-PHB10 and pec-PHB20) yielded higher densities of cells with similar characteristics to normal RPE cells. We propose, therefore, that nanofibers of pec-PHB have significant potential as retinal tissue engineering scaffold materials
    corecore