9 research outputs found
Image_1_Plasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response to renin-angiotensin system inhibitors in patients with IgA nephropathy.jpeg
BackgroundRenin-angiotensin system inhibitors (RASi) are the first choice and basic therapy for the treatment of IgA nephropathy (IgAN) with proteinuria. However, approximately 40% of patients have no response to RASi treatment. The aim of this study was to screen potential biomarkers for predicting the treatment response of RASi in patients with IgAN.MethodsWe included IgAN patients who were treatment-naive. They received supportive treatment, including a maximum tolerant dose of RASi for 3 months. According to the degree of decrease in proteinuria after 3 months of follow-up, these patients were divided into a sensitive group and a resistant group. The plasma of the two groups of patients was collected, and the exosomes were extracted for high-throughput sequencing. The screening of hub genes was performed using a weighted gene co-expression network (WGCNA) and filtering differentially expressed genes (DEGs). We randomly selected 20 patients in the sensitive group and 20 patients in the resistant group for hub gene validation by real-time quantitative polymerase chain reaction (qRT−PCR). A receiver operating characteristic (ROC) curve was used to evaluate hub genes that predicted the efficacy of the RASi response among the 40 validation patients.ResultsAfter screening 370 IgAN patients according to the inclusion and exclusion criteria and the RASi treatment response evaluation, there were 38 patients in the sensitive group and 32 patients in the resistant group. IRAK1, ABCD1 and PLXNB3 were identified as hub genes by analyzing the high-throughput sequencing of the plasma exosomes of the two groups through WGCNA and DEGs screening. The sequencing data were consistent with the validation data showing that these three hub genes were upregulated in the resistant group compared with the sensitive group. The ROC curve indicated that IRAK1 was a good biomarker to predict the therapeutic response of RASi in patients with IgAN.ConclusionsPlasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response of RASi in patients with IgAN.</p
Table_1_Plasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response to renin-angiotensin system inhibitors in patients with IgA nephropathy.docx
BackgroundRenin-angiotensin system inhibitors (RASi) are the first choice and basic therapy for the treatment of IgA nephropathy (IgAN) with proteinuria. However, approximately 40% of patients have no response to RASi treatment. The aim of this study was to screen potential biomarkers for predicting the treatment response of RASi in patients with IgAN.MethodsWe included IgAN patients who were treatment-naive. They received supportive treatment, including a maximum tolerant dose of RASi for 3 months. According to the degree of decrease in proteinuria after 3 months of follow-up, these patients were divided into a sensitive group and a resistant group. The plasma of the two groups of patients was collected, and the exosomes were extracted for high-throughput sequencing. The screening of hub genes was performed using a weighted gene co-expression network (WGCNA) and filtering differentially expressed genes (DEGs). We randomly selected 20 patients in the sensitive group and 20 patients in the resistant group for hub gene validation by real-time quantitative polymerase chain reaction (qRT−PCR). A receiver operating characteristic (ROC) curve was used to evaluate hub genes that predicted the efficacy of the RASi response among the 40 validation patients.ResultsAfter screening 370 IgAN patients according to the inclusion and exclusion criteria and the RASi treatment response evaluation, there were 38 patients in the sensitive group and 32 patients in the resistant group. IRAK1, ABCD1 and PLXNB3 were identified as hub genes by analyzing the high-throughput sequencing of the plasma exosomes of the two groups through WGCNA and DEGs screening. The sequencing data were consistent with the validation data showing that these three hub genes were upregulated in the resistant group compared with the sensitive group. The ROC curve indicated that IRAK1 was a good biomarker to predict the therapeutic response of RASi in patients with IgAN.ConclusionsPlasma exosomal IRAK1 can be a potential biomarker for predicting the treatment response of RASi in patients with IgAN.</p
Identification of the hot spot residues for pyridine derivative inhibitor CCT251455 and ATP substrate binding on monopolar spindle 1 (MPS1) kinase by molecular dynamic simulation
<p>Protein kinase monopolar spindle 1 plays an important role in spindle assembly checkpoint at the onset of mitosis. Over expression of MPS1 correlated with a wide range of human tumors makes it an attractive target for finding an effective and specific inhibitor. In this work, we performed molecular dynamics simulations of protein MPS1 itself as well as protein bound systems with the inhibitor and natural substrate based on crystal structures. The reported orally bioavailable 1 h-pyrrolo [3,2-c] pyridine inhibitors of MPS1 maintained stable binding in the catalytic site, while natural substrate ATP could not stay. Comparative study of stability and flexibility of three systems reveals position shifting of β-sheet region within the catalytic site, which indicates inhibition mechanism was through stabilizing the β-sheet region. Binding free energies calculated with MM-GB/PBSA method shows different binding affinity for inhibitor and ATP. Finally, interactions between protein and inhibitor during molecular dynamic simulations were measured and counted. Residue Gly605 and Leu654 were suggested as important hot spots for stable binding of inhibitor by molecular dynamic simulation. Our results reveal an important position shifting within catalytic site for non-inhibited proteins. Together with hot spots found by molecular dynamic simulation, the results provide important information of inhibition mechanism and will be referenced for designing novel inhibitors.</p
Remyelination of sciatic nerves.
<p>(a–d) Toluidine blue staining. At week 4 after injury, light micrographs of transverse semi-thin sections at the injury sites of the control (a), NAT-NGF (b) and LBD-NGF group (c) compared with that of native nerve group (d). (e–h) Transmission electron micrographs (TEMs). At week 12 after injury, ultra-thin sections at the injury sites of the control (a), NAT-NGF (b) and LBD-NGF group (c) compared with that of native nerve group (d) were observed under TEM. (i) The statistical analysis of the number of myelinated axons. (j) The statistical analysis of the myelinated axon diameter. (k) The statistical analysis of thickness of myelin sheath. Myelinated axons (M), unmyelinated axons (U) and Schwann cells (S) surrounding the myelinated axons can be seen clearly. n = 6, *, P<0.05, **, P<0.01, determined by two-tailed student's <i>t</i>-test.</p
Laminin-binding and sustained release assay of NAT-NGF and LBD-NGF from laminin <i>in vitro</i>.
<p>(a) Binding curves of NAT-NGF and LBD-NGF to laminin measured by ELISA assay. (b) Kd values for laminin to NAT-NGF and LBD-NGF were calculated using Scatchard analysis. (c) Detection of laminin content in the pig amnion by ELASA assay. (d) Release curves of NAT-NGF and LBD-NGF from laminin <i>in vitro</i>. n = 6, *, P<0.05, **, P<0.01, determined by two-tailed student's <i>t</i>-test.</p
Functional recovery after sciatic nerve injury.
<p>(a) Measurements made from walking track prints were then submitted to SFI. (b) NCV evaluation before and immediately after sciatic nerve injury. (c) NCV evaluation at weeks 4, 8 12 after the sciatic nerve injury. (d) DCMAP evaluation before and immediately after sciatic nerve injury. (e) DCMAP evaluation at weeks 4, 8 12 after the sciatic nerve injury. n = 6, *, P<0.05, **, P<0.01, determined by two-tailed student's <i>t</i>-test.</p
Bioactivity comparison of NAT-NGF and LBD-NGF <i>in vitro</i>.
<p>(a) Effect of NAT-NGF and LBD-NGF on neurite outgrowth in PC12 cells. (b) Effect of NAT-NGF and LBD-NGF on cell survival in PC12 cells by MTT assay. (c) Percentage of PC12 cells with neurite outgrowth on laminin stimulated by NAT-NGF and LBD-NGF. (d) PC12 cell survival on laminin stimulated by NAT-NGF and LBD-NGF was determined by MTT assay. n = 6, *, P<0.05, **, P<0.01, determined by two-tailed student's <i>t</i>-test.</p
Detection of laminin content and the sustained NAT-NGF and LBD-NGF <i>in vivo</i>.
<p>(a) Immunohistochemistry of laminin in the rat sciatic nerve. (b) Detection of laminin content in the sciatic nerve by western-blotting analysis. (c) Detection of sustained NAT-NGF and LBD-NGF at the injury sites of sciatic nerves <i>in vivo</i> by western-blotting analysis.</p