107,766 research outputs found
Privacy-preserving Cross-domain Routing Optimization -- A Cryptographic Approach
Today's large-scale enterprise networks, data center networks, and wide area
networks can be decomposed into multiple administrative or geographical
domains. Domains may be owned by different administrative units or
organizations. Hence protecting domain information is an important concern.
Existing general-purpose Secure Multi-Party Computation (SMPC) methods that
preserves privacy for domains are extremely slow for cross-domain routing
problems. In this paper we present PYCRO, a cryptographic protocol specifically
designed for privacy-preserving cross-domain routing optimization in Software
Defined Networking (SDN) environments. PYCRO provides two fundamental routing
functions, policy-compliant shortest path computing and bandwidth allocation,
while ensuring strong protection for the private information of domains. We
rigorously prove the privacy guarantee of our protocol. We have implemented a
prototype system that runs PYCRO on servers in a campus network. Experimental
results using real ISP network topologies show that PYCRO is very efficient in
computation and communication costs
Space Shuffle: A Scalable, Flexible, and High-Bandwidth Data Center Network
Data center applications require the network to be scalable and
bandwidth-rich. Current data center network architectures often use rigid
topologies to increase network bandwidth. A major limitation is that they can
hardly support incremental network growth. Recent work proposes to use random
interconnects to provide growth flexibility. However routing on a random
topology suffers from control and data plane scalability problems, because
routing decisions require global information and forwarding state cannot be
aggregated. In this paper we design a novel flexible data center network
architecture, Space Shuffle (S2), which applies greedy routing on multiple ring
spaces to achieve high-throughput, scalability, and flexibility. The proposed
greedy routing protocol of S2 effectively exploits the path diversity of
densely connected topologies and enables key-based routing. Extensive
experimental studies show that S2 provides high bisectional bandwidth and
throughput, near-optimal routing path lengths, extremely small forwarding
state, fairness among concurrent data flows, and resiliency to network
failures
- …