3,931 research outputs found

    Differential Recurrent Neural Networks for Action Recognition

    Full text link
    The long short-term memory (LSTM) neural network is capable of processing complex sequential information since it utilizes special gating schemes for learning representations from long input sequences. It has the potential to model any sequential time-series data, where the current hidden state has to be considered in the context of the past hidden states. This property makes LSTM an ideal choice to learn the complex dynamics of various actions. Unfortunately, the conventional LSTMs do not consider the impact of spatio-temporal dynamics corresponding to the given salient motion patterns, when they gate the information that ought to be memorized through time. To address this problem, we propose a differential gating scheme for the LSTM neural network, which emphasizes on the change in information gain caused by the salient motions between the successive frames. This change in information gain is quantified by Derivative of States (DoS), and thus the proposed LSTM model is termed as differential Recurrent Neural Network (dRNN). We demonstrate the effectiveness of the proposed model by automatically recognizing actions from the real-world 2D and 3D human action datasets. Our study is one of the first works towards demonstrating the potential of learning complex time-series representations via high-order derivatives of states

    Dynamical topology and statistical properties of spatiotemporal chaos

    Full text link
    For spatiotemporal chaos described by partial differential equations, there are generally locations where the dynamical variable achieves its local extremum or where the time partial derivative of the variable vanishes instantaneously. To a large extent, the location and movement of these topologically special points determine the qualitative structure of the disordered states. We analyze numerically statistical properties of the topologically special points in one-dimensional spatiotemporal chaos. The probability distribution functions for the number of point, the lifespan, and the distance covered during their lifetime are obtained from numerical simulations. Mathematically, we establish a probabilistic model to describe the dynamics of these topologically special points. In despite of the different definitions in different spatiotemporal chaos, the dynamics of these special points can be described in a uniform approach.Comment: 6 pages, 5 figure

    Holographic coherent states from random tensor networks

    Full text link
    Random tensor networks provide useful models that incorporate various important features of holographic duality. A tensor network is usually defined for a fixed graph geometry specified by the connection of tensors. In this paper, we generalize the random tensor network approach to allow quantum superposition of different spatial geometries. We set up a framework in which all possible bulk spatial geometries, characterized by weighted adjacent matrices of all possible graphs, are mapped to the boundary Hilbert space and form an overcomplete basis of the boundary. We name such an overcomplete basis as holographic coherent states. A generic boundary state can be expanded on this basis, which describes the state as a superposition of different spatial geometries in the bulk. We discuss how to define distinct classical geometries and small fluctuations around them. We show that small fluctuations around classical geometries define "code subspaces" which are mapped to the boundary Hilbert space isometrically with quantum error correction properties. In addition, we also show that the overlap between different geometries is suppressed exponentially as a function of the geometrical difference between the two geometries. The geometrical difference is measured in an area law fashion, which is a manifestation of the holographic nature of the states considered.Comment: 33 pages, 8 figures. An error corrected on page 14. Reference update

    Guo1 and "Guo2" in Chinese Temporal System

    Get PDF
    This paper aims to investigate the subtle nuances of meaning of two Chinese particles “guo1 ” and “guo2 ” as well as their different functions in Chinese temporal system. Two technical terms, “tense ” and “aspect”, in traditional Chinese grammar are reconsidered in terms of the nature of these two concepts and the criteria to distinguish them. It is argued that in traditional Chinese grammar, “tense” and “aspect ” are often mixed up by scholars, which has misled the study of “guo1 ” and “guo2”. Contrast to the traditional theory, this paper argues that “guo1 ” is the marker of the terminative aspect, while “guo2 ” is the marker of the past tense. Moreover, based on the markedness theory, the semantic and functional differences between “guo1 ” and “guo2 ” can be regarded as different usage of the particle “guo ” in the unmarked or the marked sense. 1

    Parallel Attention: A Unified Framework for Visual Object Discovery through Dialogs and Queries

    Get PDF
    Recognising objects according to a pre-defined fixed set of class labels has been well studied in the Computer Vision. There are a great many practical applications where the subjects that may be of interest are not known beforehand, or so easily delineated, however. In many of these cases natural language dialog is a natural way to specify the subject of interest, and the task achieving this capability (a.k.a, Referring Expression Comprehension) has recently attracted attention. To this end we propose a unified framework, the ParalleL AttentioN (PLAN) network, to discover the object in an image that is being referred to in variable length natural expression descriptions, from short phrases query to long multi-round dialogs. The PLAN network has two attention mechanisms that relate parts of the expressions to both the global visual content and also directly to object candidates. Furthermore, the attention mechanisms are recurrent, making the referring process visualizable and explainable. The attended information from these dual sources are combined to reason about the referred object. These two attention mechanisms can be trained in parallel and we find the combined system outperforms the state-of-art on several benchmarked datasets with different length language input, such as RefCOCO, RefCOCO+ and GuessWhat?!.Comment: 11 page
    • …
    corecore