328 research outputs found
Improving Image Restoration with Soft-Rounding
Several important classes of images such as text, barcode and pattern images
have the property that pixels can only take a distinct subset of values. This
knowledge can benefit the restoration of such images, but it has not been
widely considered in current restoration methods. In this work, we describe an
effective and efficient approach to incorporate the knowledge of distinct pixel
values of the pristine images into the general regularized least squares
restoration framework. We introduce a new regularizer that attains zero at the
designated pixel values and becomes a quadratic penalty function in the
intervals between them. When incorporated into the regularized least squares
restoration framework, this regularizer leads to a simple and efficient step
that resembles and extends the rounding operation, which we term as
soft-rounding. We apply the soft-rounding enhanced solution to the restoration
of binary text/barcode images and pattern images with multiple distinct pixel
values. Experimental results show that soft-rounding enhanced restoration
methods achieve significant improvement in both visual quality and quantitative
measures (PSNR and SSIM). Furthermore, we show that this regularizer can also
benefit the restoration of general natural images.Comment: 9 pages, 6 figure
Deep Reinforcement Learning for Resource Management in Network Slicing
Network slicing is born as an emerging business to operators, by allowing
them to sell the customized slices to various tenants at different prices. In
order to provide better-performing and cost-efficient services, network slicing
involves challenging technical issues and urgently looks forward to intelligent
innovations to make the resource management consistent with users' activities
per slice. In that regard, deep reinforcement learning (DRL), which focuses on
how to interact with the environment by trying alternative actions and
reinforcing the tendency actions producing more rewarding consequences, is
assumed to be a promising solution. In this paper, after briefly reviewing the
fundamental concepts of DRL, we investigate the application of DRL in solving
some typical resource management for network slicing scenarios, which include
radio resource slicing and priority-based core network slicing, and demonstrate
the advantage of DRL over several competing schemes through extensive
simulations. Finally, we also discuss the possible challenges to apply DRL in
network slicing from a general perspective.Comment: The manuscript has been accepted by IEEE Access in Nov. 201
A Diffusion Model Based Quality Enhancement Method for HEVC Compressed Video
Video post-processing methods can improve the quality of compressed videos at
the decoder side. Most of the existing methods need to train corresponding
models for compressed videos with different quantization parameters to improve
the quality of compressed videos. However, in most cases, the quantization
parameters of the decoded video are unknown. This makes existing methods have
their limitations in improving video quality. To tackle this problem, this work
proposes a diffusion model based post-processing method for compressed videos.
The proposed method first estimates the feature vectors of the compressed video
and then uses the estimated feature vectors as the prior information for the
quality enhancement model to adaptively enhance the quality of compressed video
with different quantization parameters. Experimental results show that the
quality enhancement results of our proposed method on mixed datasets are
superior to existing methods.Comment: 10 pages, conferenc
- …