331 research outputs found
Dynamic correlations of the Coulomb Luttinger liquid
The dynamic density response function, form-factor, and spectral function of
a Luttinger liquid with Coulomb electron-electron interaction are studied with
the emphasis on the short-range electron correlations. The Coulomb interaction
changes dramatically the density response function as compared to the case of
the short-ranged interaction. The form of the density response function is
smoothing with time, and the oscillatory structure appears. However, the
spectral functions remain qualitatively the same. The dynamic form-factor
contains the -peak in the long-wave region, corresponding to one-boson
excitations. Besides, the multi-boson-excitations band exists in the
wave-number region near to . The dynamic form-factor diverges at the
edges of this band, while the dielectric function goes to zero there, which
indicates the appearance of a soft mode. We develop a method to analyze the
asymptotics of the spectral functions near to the edges of the
multi-boson-excitations band.Comment: 11 pages, 3 figures, submitted to PR
Plasmon-pole approximation for semiconductor quantum wire electrons
We develop the plasmon-pole approximation for an interacting electron gas
confined in a semiconductor quantum wire. We argue that the plasmon-pole
approximation becomes a more accurate approach in quantum wire systems than in
higher dimensional systems because of severe phase-space restrictions on
particle-hole excitations in one dimension. As examples, we use the
plasmon-pole approximation to calculate the electron self-energy due to the
Coulomb interaction and the hot-electron energy relaxation rate due to
LO-phonon emission in GaAs quantum wires. We find that the plasmon-pole
approximation works extremely well as compared with more complete many-body
calculations.Comment: 16 pages, RevTex, figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Free-volume evolution and its temperature dependence during rolling of Cu60Zr20Ti20 bulk metallic glass
Orthorhombically Mixed s and d Wave Superconductivity and Josephson Tunneling
The effect of orthorhombicity on Josephson tunneling in high T
superconductors such as YBCO is studied for both single crystals and highly
twinned crystals. It is shown that experiments on highly twinned crystals
experimentally determine the symmetry of the superconducting twin boundaries
(which can be either even or odd with respect to a reflection in the twinning
plane). Conversely, Josephson experiments on highly twinned crystals can not
experimentally determine whether the superconductivity is predominantly
-wave or predominantly -wave. The direct experimental determination of
the order-parameter symmetry by Josephson tunneling in YBCO thus comes from the
relatively few experiments which have been carried out on untwinned single
crystals.Comment: 5 pages, RevTeX file, 1 figure available on request
([email protected]
Phase-Sensitive Tetracrystal Pairing-Symmetry Measurements and Broken Time-Reversal Symmetry States of High Tc Superconductors
A detailed analysis of the symmetric tetracrystal geometry used in
phase-sensitive pairing symmetry experiments on high Tc superconductors is
carried out for both bulk and surface time-reversal symmetry-breaking states,
such as the d+id' and d+is states. The results depend critically on the
substrate geometry. In the general case, for the bulk d+id' (or d+is) state,
the measured flux quantization should in general not be too different from that
obtained in the pure d-wave case, provided |d'| << |d| (or |s| << |d|).
However, in one particular high symmetry geometry, the d+id' state gives
results that allow it to be distinguished from the pure d and the d + is
states. Results are also given for the cases where surface d+is or d+id' states
occur at a [110] surface of a bulk d-wave superconductor. Remarkably, in the
highest symmetry geometry, a number of the broken time-reversal symmetry states
discussed above give flux quantization conditions usually associated with
states not having broken time- reversal symmetry.Comment: 6 page
Luttinger Parameter g for Metallic Carbon Nanotubes and Related Systems
The random phase approximation (RPA) theory is used to derive the Luttinger
parameter g for metallic carbon nanotubes. The results are consistent with the
Tomonaga-Luttinger models. All metallic carbon nanotubes, regardless if they
are armchair tubes, zigzag tubes, or chiral tubes, should have the same
Luttinger parameter g. However, a (10,10) carbon peapod should have a smaller g
value than a (10,10) carbon nanotube. Changing the Fermi level by applying a
gate voltage has only a second order effect on the g value. RPA theory is a
valid approach to calculate plasmon energy in carbon nanotube systems,
regardless if the ground state is a Luttinger liquid or Fermi liquid. (This
paper was published in PRB 66, 193405 (2002). However, Eqs. (6), (9), and (19)
were misprinted there.)Comment: 2 figure
Intrasubband and Intersubband Electron Relaxation in Semiconductor Quantum Wire Structures
We calculate the intersubband and intrasubband many-body inelastic Coulomb
scattering rates due to electron-electron interaction in two-subband
semiconductor quantum wire structures. We analyze our relaxation rates in terms
of contributions from inter- and intrasubband charge-density excitations
separately. We show that the intersubband (intrasubband) charge-density
excitations are primarily responsible for intersubband (intrasubband) inelastic
scattering. We identify the contributions to the inelastic scattering rate
coming from the emission of the single-particle and the collective excitations
individually. We obtain the lifetime of hot electrons injected in each subband
as a function of the total charge density in the wire.Comment: Submitted to PRB. 20 pages, Latex file, and 7 postscript files with
Figure
Energy relaxation of an excited electron gas in quantum wires: many-body electron LO-phonon coupling
We theoretically study energy relaxation via LO-phonon emission in an excited
one-dimensional electron gas confined in a GaAs quantum wire structure. We find
that the inclusion of phonon renormalization effects in the theory extends the
LO-phonon dominated loss regime down to substantially lower temperatures. We
show that a simple plasmon-pole approximation works well for this problem, and
discuss implications of our results for low temperature electron heating
experiments in quantum wires.Comment: 10 pages, RevTex, 4 figures included. Also available at
http://www-cmg.physics.umd.edu/~lzheng
Mixed symmetry superconductivity in two-dimensional Fermi liquids
We consider a 2D isotropic Fermi liquid with attraction in both and
channels and examine the possibility of a superconducting state with mixed
and symmetry of the gap function. We show that both in the weak coupling
limit and at strong coupling, a mixed symmetry state is realized in a
certain range of interaction. Phase transitions between the mixed and the pure
symmetry states are second order. We also show that there is no stable mixed
symmetry state at any coupling.Comment: 3 figures attached in uuencoded gzipped file
Tomonaga-Luttinger parameters for quantum wires
The low-energy properties of a homogeneous one-dimensional electron system
are completely specified by two Tomonaga-Luttinger parameters and
. In this paper we discuss microscopic estimates of the values of
these parameters in semiconductor quantum wires that exploit their relationship
to thermodynamic properties. Motivated by the recognized similarity between
correlations in the ground state of a one-dimensional electron liquid and
correlations in a Wigner crystal, we evaluate these thermodynamic quantities in
a self-consistent Hartree-Fock approximation. According to our calculations,
the Hartree-Fock approximation ground state is a Wigner crystal at all electron
densities and has antiferromagnetic order that gradually evolves from
spin-density-wave to localized in character as the density is lowered. Our
results for are in good agreement with weak-coupling perturbative
estimates at high densities, but deviate strongly at low
densities, especially when the electron-electron interaction is screened at
long distances. vanishes at small carrier density
whereas we conjecture that when , implying that
should pass through a minimum at an intermediate density.
Observation of such a non-monotonic dependence on particle density would allow
to measure the range of the microscopic interaction. In the spin sector we find
that the spin velocity decreases with increasing interaction strength or
decreasing . Strong correlation effects make it difficult to obtain fully
consistent estimates of from Hartree-Fock calculations. We
conjecture that v_{\sigma}/\vf\propto n/V_0 in the limit where
is the interaction strength.Comment: RevTeX, 23 pages, 8 figures include
- …
