77,778 research outputs found
Study on Actuator Line Modeling of Two NREL 5-MW Wind Turbine Wakes
The wind turbine wakes impact the efficiency and lifespan of the wind farm. Therefore, to improve the wind plant performance, research on wind plant control is essential. The actuator line model (ALM) is proposed to simulate the wind turbine efficiently. This research investigates the National Renewable Energy Laboratory 5 Million Watts (NREL 5-MW) wind turbine wakes with Open Field Operation and Manipulation (OpenFOAM) using ALM. Firstly, a single NREL 5-MW turbine is simulated. The comparison of the power and thrust with Fatigue, Aerodynamics, Structures, and Turbulence (FAST) shows a good agreement below the rated wind speed. The information relating to wind turbine wakes is given in detail. The top working status is proved at the wind speed of 8 m/s and the downstream distance of more than 5 rotor diameters (5D). Secondly, another case with two NREL 5-MW wind turbines aligned is also carried out, in which 7D is validated as the optimum distance between the two turbines. The result also shows that the upstream wind turbine has an obvious influence on the downstream one
Pion-photon and photon-pion transition form factors in light-cone formalism
We derive the minimal Fock-state expansions of the pion and the photon wave
functions in light-cone formalism, then we calculate the pion-photon and the
photon-pion transition form factors of and
processes by employing these
quark-antiquark wave functions of the pion and the photon. We find that our
calculation for the transition form factor
agrees with the experimental data at low and moderately high energy scale.
Moreover, the physical differences and inherent connections between the
transition form factors of and have been illustrated, which indicate that these
two physical processes are intrinsically related. In addition, we also discuss
the form factor and the decay width at .Comment: 20 pages, 2 figure
Bifurcation diagram and pattern formation in superconducting wires with electric currents
We examine the behavior of a one-dimensional superconducting wire exposed to
an applied electric current. We use the time-dependent Ginzburg-Landau model to
describe the system and retain temperature and applied current as parameters.
Through a combination of spectral analysis, asymptotics and canonical numerical
computation, we divide this two-dimensional parameter space into a number of
regions. In some of them only the normal state or a stationary state or an
oscillatory state are stable, while in some of them two states are stable. One
of the most interesting features of the analysis is the evident collision of
real eigenvalues of the associated PT-symmetric linearization, leading as it
does to the emergence of complex elements of the spectrum. In particular this
provides an explanation to the emergence of a stable oscillatory state. We show
that part of the bifurcation diagram and many of the emerging patterns are
directly controlled by this spectrum, while other patterns arise due to
nonlinear interaction of the leading eigenfunctions
Study on SPH Viscosity Term Formulations
For viscosity-dominated flows, the viscous effect plays a much more important role. Since the viscosity term in SPH-governing (Smoothed Particle Hydrodynamics) equations involves the discretization of a second-order derivative, its treatment could be much more challenging than that of a first-order derivative, such as the pressure gradient. The present paper summarizes a series of improved methods for modeling the second-order viscosity force term. By using a benchmark patch test, the numerical accuracy and efficiency of different approaches are evaluated under both uniform and non-uniform particle configurations. Then these viscosity force models are used to compute a documented lid-driven cavity flow and its interaction with a cylinder, from which the most recommended viscosity term formulation has been identified
Transmission of Water Waves under Multiple Vertical Thin Plates
The transmission of water waves under vertical thin plates, e.g., offshore floating breakwaters, oscillating water column wave energy converters, and so on, is a crucial feature that dominates the hydrodynamic performance of marine devices. In this paper, the analytical solution to the transmission of water waves under multiple 2D vertical thin plates is firstly derived based on the linear potential theory. The influences of relevant parameters on the wave transmission are discussed, which include the number of plates, the draft of plates, the distance between plates and the water depth. The analytical results suggest that the transmission of progressive waves gradually weakens with the growth of the number and draft of plates, and under the conditions of given number and draft of plates, the distribution of plates has significant influence on the transmission of progressive waves. The results of this paper contribute to the understanding of the transmission of water waves under multiple vertical thin plates, as well as the suggestion on optimal design of complex marine devices, such as a floating breakwater with multiple plates
Axial vector form factor of nucleons in a light-cone diquark model
The nucleon axial vector form factor is investigated in a light-cone quark
spectator diquark model, in which Melosh rotations are applied to both the
quark and vector diquark. It is found that this model gives a very good
description of available experimental data and the results have very little
dependence on the parameters of the model. The relation between the nucleon
axial constant and the anomalous magnetic moment of nucleons is also discussed.Comment: 8 pages, Revtex4, 1 figure, version to be published in Phys. Rev.
- …