215 research outputs found

    Geodesics and compression bodies

    Full text link
    We consider hyperbolic structures on the compression body C with genus 2 positive boundary and genus 1 negative boundary. Note that C deformation retracts to the union of the torus boundary and a single arc with its endpoints on the torus. We call this arc the core tunnel of C. We conjecture that, in any geometrically finite structure on C, the core tunnel is isotopic to a geodesic. By considering Ford domains, we show this conjecture holds for many geometrically finite structures. Additionally, we give an algorithm to compute the Ford domain of such a manifold, and a procedure which has been implemented to visualize many of these Ford domains. Our computer implementation gives further evidence for the conjecture.Comment: 31 pages, 11 figures. V2 contains minor changes. To appear in Experimental Mathematic

    Links with no exceptional surgeries

    Full text link
    We show that if a knot admits a prime, twist-reduced diagram with at least 4 twist regions and at least 6 crossings per twist region, then every non-trivial Dehn filling of that knot is hyperbolike. A similar statement holds for links. We prove this using two arguments, one geometric and one combinatorial. The combinatorial argument further implies that every link with at least 2 twist regions and at least 6 crossings per twist region is hyperbolic and gives a lower bound for the genus of a link.Comment: 28 pages, 15 figures. Minor rewording and organizational changes; also added theorem giving a lower bound on the genus of these link

    Cusp volumes of alternating knots

    Full text link
    We show that the cusp volume of a hyperbolic alternating knot can be bounded above and below in terms of the twist number of an alternating diagram of the knot. This leads to diagrammatic estimates on lengths of slopes, and has some applications to Dehn surgery. Another consequence is that there is a universal lower bound on the cusp density of hyperbolic alternating knots.Comment: 21 pages, 8 figures; v4: revised final version, with corrected constants throughout the paper; to appear in Geometry & Topolog
    corecore