90 research outputs found

    Collaborative Spatio-temporal Feature Learning for Video Action Recognition

    Full text link
    Spatio-temporal feature learning is of central importance for action recognition in videos. Existing deep neural network models either learn spatial and temporal features independently (C2D) or jointly with unconstrained parameters (C3D). In this paper, we propose a novel neural operation which encodes spatio-temporal features collaboratively by imposing a weight-sharing constraint on the learnable parameters. In particular, we perform 2D convolution along three orthogonal views of volumetric video data,which learns spatial appearance and temporal motion cues respectively. By sharing the convolution kernels of different views, spatial and temporal features are collaboratively learned and thus benefit from each other. The complementary features are subsequently fused by a weighted summation whose coefficients are learned end-to-end. Our approach achieves state-of-the-art performance on large-scale benchmarks and won the 1st place in the Moments in Time Challenge 2018. Moreover, based on the learned coefficients of different views, we are able to quantify the contributions of spatial and temporal features. This analysis sheds light on interpretability of the model and may also guide the future design of algorithm for video recognition.Comment: CVPR 201

    A Layer Decomposition-Recomposition Framework for Neuron Pruning towards Accurate Lightweight Networks

    Full text link
    Neuron pruning is an efficient method to compress the network into a slimmer one for reducing the computational cost and storage overhead. Most of state-of-the-art results are obtained in a layer-by-layer optimization mode. It discards the unimportant input neurons and uses the survived ones to reconstruct the output neurons approaching to the original ones in a layer-by-layer manner. However, an unnoticed problem arises that the information loss is accumulated as layer increases since the survived neurons still do not encode the entire information as before. A better alternative is to propagate the entire useful information to reconstruct the pruned layer instead of directly discarding the less important neurons. To this end, we propose a novel Layer Decomposition-Recomposition Framework (LDRF) for neuron pruning, by which each layer's output information is recovered in an embedding space and then propagated to reconstruct the following pruned layers with useful information preserved. We mainly conduct our experiments on ILSVRC-12 benchmark with VGG-16 and ResNet-50. What should be emphasized is that our results before end-to-end fine-tuning are significantly superior owing to the information-preserving property of our proposed framework.With end-to-end fine-tuning, we achieve state-of-the-art results of 5.13x and 3x speed-up with only 0.5% and 0.65% top-5 accuracy drop respectively, which outperform the existing neuron pruning methods.Comment: accepted by AAAI19 as ora

    AON: Towards Arbitrarily-Oriented Text Recognition

    Full text link
    Recognizing text from natural images is a hot research topic in computer vision due to its various applications. Despite the enduring research of several decades on optical character recognition (OCR), recognizing texts from natural images is still a challenging task. This is because scene texts are often in irregular (e.g. curved, arbitrarily-oriented or seriously distorted) arrangements, which have not yet been well addressed in the literature. Existing methods on text recognition mainly work with regular (horizontal and frontal) texts and cannot be trivially generalized to handle irregular texts. In this paper, we develop the arbitrary orientation network (AON) to directly capture the deep features of irregular texts, which are combined into an attention-based decoder to generate character sequence. The whole network can be trained end-to-end by using only images and word-level annotations. Extensive experiments on various benchmarks, including the CUTE80, SVT-Perspective, IIIT5k, SVT and ICDAR datasets, show that the proposed AON-based method achieves the-state-of-the-art performance in irregular datasets, and is comparable to major existing methods in regular datasets.Comment: Accepted by CVPR201

    Learned Quality Enhancement via Multi-Frame Priors for HEVC Compliant Low-Delay Applications

    Full text link
    Networked video applications, e.g., video conferencing, often suffer from poor visual quality due to unexpected network fluctuation and limited bandwidth. In this paper, we have developed a Quality Enhancement Network (QENet) to reduce the video compression artifacts, leveraging the spatial and temporal priors generated by respective multi-scale convolutions spatially and warped temporal predictions in a recurrent fashion temporally. We have integrated this QENet as a standard-alone post-processing subsystem to the High Efficiency Video Coding (HEVC) compliant decoder. Experimental results show that our QENet demonstrates the state-of-the-art performance against default in-loop filters in HEVC and other deep learning based methods with noticeable objective gains in Peak-Signal-to-Noise Ratio (PSNR) and subjective gains visually
    • …
    corecore