71 research outputs found
Optimal Substring-Equality Queries with Applications to Sparse Text Indexing
We consider the problem of encoding a string of length from an integer
alphabet of size so that access and substring equality queries (that
is, determining the equality of any two substrings) can be answered
efficiently. Any uniquely-decodable encoding supporting access must take
bits. We describe a new data
structure matching this lower bound when while supporting
both queries in optimal time. Furthermore, we show that the string can
be overwritten in-place with this structure. The redundancy of
bits and the constant query time break exponentially a lower bound that is
known to hold in the read-only model. Using our new string representation, we
obtain the first in-place subquadratic (indeed, even sublinear in some cases)
algorithms for several string-processing problems in the restore model: the
input string is rewritable and must be restored before the computation
terminates. In particular, we describe the first in-place subquadratic Monte
Carlo solutions to the sparse suffix sorting, sparse LCP array construction,
and suffix selection problems. With the sole exception of suffix selection, our
algorithms are also the first running in sublinear time for small enough sets
of input suffixes. Combining these solutions, we obtain the first
sublinear-time Monte Carlo algorithm for building the sparse suffix tree in
compact space. We also show how to derandomize our algorithms using small
space. This leads to the first Las Vegas in-place algorithm computing the full
LCP array in time and to the first Las Vegas in-place algorithms
solving the sparse suffix sorting and sparse LCP array construction problems in
time. Running times of these Las Vegas
algorithms hold in the worst case with high probability.Comment: Refactored according to TALG's reviews. New w.h.p. bounds and Las
Vegas algorithm
Universal Compressed Text Indexing
The rise of repetitive datasets has lately generated a lot of interest in
compressed self-indexes based on dictionary compression, a rich and
heterogeneous family that exploits text repetitions in different ways. For each
such compression scheme, several different indexing solutions have been
proposed in the last two decades. To date, the fastest indexes for repetitive
texts are based on the run-length compressed Burrows-Wheeler transform and on
the Compact Directed Acyclic Word Graph. The most space-efficient indexes, on
the other hand, are based on the Lempel-Ziv parsing and on grammar compression.
Indexes for more universal schemes such as collage systems and macro schemes
have not yet been proposed. Very recently, Kempa and Prezza [STOC 2018] showed
that all dictionary compressors can be interpreted as approximation algorithms
for the smallest string attractor, that is, a set of text positions capturing
all distinct substrings. Starting from this observation, in this paper we
develop the first universal compressed self-index, that is, the first indexing
data structure based on string attractors, which can therefore be built on top
of any dictionary-compressed text representation. Let be the size of a
string attractor for a text of length . Our index takes
words of space and supports locating the
occurrences of any pattern of length in
time, for any constant . This is, in particular, the first index
for general macro schemes and collage systems. Our result shows that the
relation between indexing and compression is much deeper than what was
previously thought: the simple property standing at the core of all dictionary
compressors is sufficient to support fast indexed queries.Comment: Fixed with reviewer's comment
Computing LZ77 in Run-Compressed Space
In this paper, we show that the LZ77 factorization of a text T {\in\Sigma^n}
can be computed in O(R log n) bits of working space and O(n log R) time, R
being the number of runs in the Burrows-Wheeler transform of T reversed. For
extremely repetitive inputs, the working space can be as low as O(log n) bits:
exponentially smaller than the text itself. As a direct consequence of our
result, we show that a class of repetition-aware self-indexes based on a
combination of run-length encoded BWT and LZ77 can be built in asymptotically
optimal O(R + z) words of working space, z being the size of the LZ77 parsing
Algorithms for Massive Data -- Lecture Notes
These are the lecture notes for the course CM0622 - Algorithms for Massive
Data, Ca' Foscari University of Venice. The goal of this course is to introduce
algorithmic techniques for dealing with massive data: data so large that it
does not fit in the computer's memory. Broadly speaking, there are two main
solutions to deal with massive data: (lossless) compressed data structures and
(lossy) data sketches. These notes cover the latter topic: probabilistic
filters, sketching under various metrics, Locality Sensitive Hashing, nearest
neighbour search, algorithms on streams (pattern matching, counting).Comment: refactored structure; refactored variable names in section 2 for
consistency with the rest of the notes (m is number of elements and n is
universe size); refactored hashing chapter; improved proof of Lem 1.3.11;
improved explanation of Counting Bloom filters; added pointer to paper [22];
refactored section 3.
Optimal-Time Text Indexing in BWT-runs Bounded Space
Indexing highly repetitive texts --- such as genomic databases, software
repositories and versioned text collections --- has become an important problem
since the turn of the millennium. A relevant compressibility measure for
repetitive texts is , the number of runs in their Burrows-Wheeler Transform
(BWT). One of the earliest indexes for repetitive collections, the Run-Length
FM-index, used space and was able to efficiently count the number of
occurrences of a pattern of length in the text (in loglogarithmic time per
pattern symbol, with current techniques). However, it was unable to locate the
positions of those occurrences efficiently within a space bounded in terms of
. Since then, a number of other indexes with space bounded by other measures
of repetitiveness --- the number of phrases in the Lempel-Ziv parse, the size
of the smallest grammar generating the text, the size of the smallest automaton
recognizing the text factors --- have been proposed for efficiently locating,
but not directly counting, the occurrences of a pattern. In this paper we close
this long-standing problem, showing how to extend the Run-Length FM-index so
that it can locate the occurrences efficiently within space (in
loglogarithmic time each), and reaching optimal time within
space, on a RAM machine of bits. Within
space, our index can also count in optimal time .
Raising the space to , we support count and locate in
and time, which is optimal in the
packed setting and had not been obtained before in compressed space. We also
describe a structure using space that replaces the text and
extracts any text substring of length in almost-optimal time
. (...continues...
On Indexing and Compressing Finite Automata
An index for a finite automaton is a powerful data structure that supports
locating paths labeled with a query pattern, thus solving pattern matching on
the underlying regular language. In this paper, we solve the long-standing
problem of indexing arbitrary finite automata. Our solution consists in finding
a partial co-lexicographic order of the states and proving, as in the total
order case, that states reached by a given string form one interval on the
partial order, thus enabling indexing. We provide a lower bound stating that
such an interval requires words to be represented, being the order's
width (i.e. the size of its largest antichain). Indeed, we show that
determines the complexity of several fundamental problems on finite automata:
(i) Letting be the alphabet size, we provide an encoding for NFAs
using bits per transition
and a smaller encoding for DFAs using bits per transition. This is achieved by generalizing the
Burrows-Wheeler transform to arbitrary automata. (ii) We show that indexed
pattern matching can be solved in query time on NFAs.
(iii) We provide a polynomial-time algorithm to index DFAs, while matching the
optimal value for . On the other hand, we prove that the problem is
NP-hard on NFAs. (iv) We show that, in the worst case, the classic powerset
construction algorithm for NFA determinization generates an equivalent DFA of
size , where is the number of NFA's states
- …