264 research outputs found
Programmable unitary spatial modes manipulation
Free space propagation and conventional optical systems such as lenses and
mirrors all perform spatial unitary transforms. However, the subset of
transforms available through these conventional systems is limited in scope. We
present here a unitary programmable mode converter (UPMC) capable of performing
any spatial unitary transform of the light field. It is based on a succession
of reflections on programmable deformable mirrors and free space propagation.
We first show theoretically that a UPMC without limitations on resources can
perform perfectly any transform. We then build an experimental implementation
of the UPMC and show that, even when limited to three reflections on an array
of 12 pixels, the UPMC is capable of performing single mode tranforms with an
efficiency greater than 80% for the first 4 modes of the TEM basis
Semi-active damping using a hybrid control approach
In this article, a hybrid control framework is used to design semi-active controllers for vibration reduction. It is shown that the semi-active skyhook damper, typically used for vibration reduction, can be recast in the framework of an event-driven intermittent controller. By doing this, we can then exploit the well-developed techniques associated with hybrid control theory to design the semi-active control system. Illustrative simulation examples are based on a 2 degree-of-freedom system, often used to model the dynamics of a quarter car body model. The simulation results demonstrate how hybrid control design techniques can improve the overall performance of the semi-active control system
Recommended from our members
Wavelet-based response spectrum compatible synthesis of accelerograms-Eurocode application (EC8)
An integrated approach for addressing the problem of synthesizing artificial seismic accelerograms compatible with a given displacement design/target spectrum is presented in conjunction with aseismic design applications. Initially, a stochastic dynamics solution is used to obtain a family of simulated non-stationary earthquake records whose response spectrum is on the average in good agreement with the target spectrum. The degree of the agreement depends significantly on the adoption of an appropriate parametric evolutionary power spectral form, which is related to the target spectrum in an approximate manner. The performance of two commonly used spectral forms along with a newly proposed one is assessed with respect to the elastic displacement design spectrum defined by the European code regulations (EC8). Subsequently, the computational versatility of the family of harmonic wavelets is employed to modify iteratively the simulated records to satisfy the compatibility criteria for artificial accelerograms prescribed by EC8. In the process, baseline correction steps, ordinarily taken to ensure that the obtained accelerograms are characterized by physically meaningful velocity and displacement traces, are elucidated. Obviously, the presented approach can be used not only in the case of the EC8, for which extensive numerical results/examples are included, but also for any code provisions mandated by regulatory agencies. In any case, the presented numerical results can be quite useful in any aseismic design process dominated by the EC8 specifications
Isolation and damping properties of magnetorheologic elastomers
Abstract. This paper considers two systems based on a magnetorheological elastomer (MRE): a MRE isolator under a frequency varying harmonic excitation and a MRE Dynamic Vibration Absorber (DVA) mounted on a frequency-varying structure under a random excitation. It is shown that the commandability of the elastomer improves the isolation performances in the first case, and decreases the stress level in the structure in the second case
Recommended from our members
Synthesis of accelerograms compatible with the Chinese GB 50011-2001 design spectrum via harmonic wavelets: artificial and historic records
A versatile approach is employed to generate artificial accelerograms which satisfy the compatibility criteria prescribed by the Chinese aseismic code provisions GB 50011-2001. In particular, a frequency dependent peak factor derived by means of appropriate Monte Carlo analyses is introduced to relate the GB 50011-2001 design spectrum to a parametrically defined evolutionary power spectrum (EPS). Special attention is given to the definition of the frequency content of the EPS in order to accommodate the mathematical form of the aforementioned design spectrum. Further, a one-to-one relationship is established between the parameter controlling the time-varying intensity of the EPS and the effective strong ground motion duration. Subsequently, an efficient auto-regressive moving-average (ARMA) filtering technique is utilized to generate ensembles of non-stationary artificial accelerograms whose average response spectrum is in a close agreement with the considered design spectrum. Furthermore, a harmonic wavelet based iterative scheme is adopted to modify these artificial signals so that a close matching of the signals’ response spectra with the GB 50011-2001 design spectrum is achieved on an individual basis. This is also done for field recorded accelerograms pertaining to the May, 2008 Wenchuan seismic event. In the process, zero-phase high-pass filtering is performed to accomplish proper baseline correction of the acquired spectrum compatible artificial and field accelerograms. Numerical results are given in a tabulated format to expedite their use in practice
A new approach to assess and predict the functional roles of proteins across all known structures
The three dimensional atomic structures of proteins provide information regarding their function; and codified relationships between structure and function enable the assessment of function from structure. In the current study, a new data mining tool was implemented that checks current gene ontology (GO) annotations and predicts new ones across all the protein structures available in the Protein Data Bank (PDB). The tool overcomes some of the challenges of utilizing large amounts of protein annotation and measurement information to form correspondences between protein structure and function. Protein attributes were extracted from the Structural Biology Knowledgebase and open source biological databases. Based on the presence or absence of a given set of attributes, a given protein’s functional annotations were inferred. The results show that attributes derived from the three dimensional structures of proteins enhanced predictions over that using attributes only derived from primary amino acid sequence. Some predictions reflected known but not completely documented GO annotations. For example, predictions for the GO term for copper ion binding reflected used information a copper ion was known to interact with the protein based on information in a ligand interaction database. Other predictions were novel and require further experimental validation. These include predictions for proteins labeled as unknown function in the PDB. Two examples are a role in the regulation of transcription for the protein AF1396 from Archaeoglobus fulgidus and a role in RNA metabolism for the protein psuG from Thermotoga maritima
- …