384 research outputs found

    Stability Properties of the Time Domain Electric Field Integral Equation Using a Separable Approximation for the Convolution with the Retarded Potential

    Full text link
    The state of art of time domain integral equation (TDIE) solvers has grown by leaps and bounds over the past decade. During this time, advances have been made in (i) the development of accelerators that can be retrofitted with these solvers and (ii) understanding the stability properties of the electric field integral equation. As is well known, time domain electric field integral equation solvers have been notoriously difficult to stabilize. Research into methods for understanding and prescribing remedies have been on the uptick. The most recent of these efforts are (i) Lubich quadrature and (ii) exact integration. In this paper, we re-examine the solution to this equation using (i) the undifferentiated form of the TD-EFIE and (ii) a separable approximation to the spatio-temporal convolution. The proposed scheme can be constructed such that the spatial integrand over the source and observer domains is smooth and integrable. As several numerical results will demonstrate, the proposed scheme yields stable results for long simulation times and a variety of targets, both of which have proven extremely challenging in the past.Comment: 9 pages, 13 figures. To be published in IEEE Transactions on Antennas and Propagatio

    The binary near-Earth asteroid (175706) 1996 FG3 - An observational constraint on its orbital evolution

    Full text link
    Using our photometric observations taken between 1996 and 2013 and other published data, we derived properties of the binary near-Earth asteroid (175706) 1996 FG3 including new measurements constraining evolution of the mutual orbit with potential consequences for the entire binary asteroid population. We also refined previously determined values of parameters of both components, making 1996 FG3 one of the most well understood binary asteroid systems. We determined the orbital vector with a substantially greater accuracy than before and we also placed constraints on a stability of the orbit. Specifically, the ecliptic longitude and latitude of the orbital pole are 266{\deg} and -83{\deg}, respectively, with the mean radius of the uncertainty area of 4{\deg}, and the orbital period is 16.1508 +/- 0.0002 h (all quoted uncertainties correspond to 3sigma). We looked for a quadratic drift of the mean anomaly of the satellite and obtained a value of 0.04 +/- 0.20 deg/yr^2, i.e., consistent with zero. The drift is substantially lower than predicted by the pure binary YORP (BYORP) theory of McMahon and Scheeres (McMahon, J., Scheeres, D. [2010]. Icarus 209, 494-509) and it is consistent with the theory of an equilibrium between BYORP and tidal torques for synchronous binary asteroids as proposed by Jacobson and Scheeres (Jacobson, S.A., Scheeres, D. [2011]. ApJ Letters, 736, L19). Based on the assumption of equilibrium, we derived a ratio of the quality factor and tidal Love number of Q/k = 2.4 x 10^5 uncertain by a factor of five. We also derived a product of the rigidity and quality factor of mu Q = 1.3 x 10^7 Pa using the theory that assumes an elastic response of the asteroid material to the tidal forces. This very low value indicates that the primary of 1996 FG3 is a 'rubble pile', and it also calls for a re-thinking of the tidal energy dissipation in close asteroid binary systems.Comment: Many changes based on referees comment

    Formation of asteroid pairs by rotational fission

    Get PDF
    Asteroid pairs sharing similar heliocentric orbits were found recently. Backward integrations of their orbits indicated that they separated gently with low relative velocities, but did not provide additional insight into their formation mechanism. A previously hypothesized rotational fission process4 may explain their formation - critical predictions are that the mass ratios are less than about 0.2 and, as the mass ratio approaches this upper limit, the spin period of the larger body becomes long. Here we report photometric observations of a sample of asteroid pairs revealing that primaries of pairs with mass ratios much less than 0.2 rotate rapidly, near their critical fission frequency. As the mass ratio approaches 0.2, the primary period grows long. This occurs as the total energy of the system approaches zero requiring the asteroid pair to extract an increasing fraction of energy from the primary's spin in order to escape. We do not find asteroid pairs with mass ratios larger than 0.2. Rotationally fissioned systems beyond this limit have insufficient energy to disrupt. We conclude that asteroid pairs are formed by the rotational fission of a parent asteroid into a proto-binary system which subsequently disrupts under its own internal system dynamics soon after formation.Comment: 12 pages, 2 figures, 1 table + Supplementary Informatio

    GMOs: Non-Health Issues

    Get PDF
    The controversy over genetically modified [GM] organisms is often framed in terms of possible hazards for human health. Articles in a previous volume of this *Encyclopedia* give a general overview of GM crops [@Mulvaney2014] and specifically examine human health [@Nordgard2014] and labeling [@Bruton2014] issues surrounding GM organisms. This article explores several other aspects of the controversy: environmental concerns, political and legal disputes, and the aim of "feeding the world" and promoting food security. Rather than discussing abstract, hypothetical GM organisms, this article explores the consequences of the GM organisms that have actually been deployed in the particular contexts that they have been deployed, on the belief that there is little point in discussing GM organisms in an idealized or context-independent way

    Response to issues on GM agriculture in Africa: Are transgenic crops safe?

    Get PDF
    The controversies surrounding transgenic crops, often called Genetically Modified Organisms (GMOs), call for a need to raise the level of public awareness of Genetic Modification (GM) technology in Africa. This should be accomplished by educating the public about the potential benefits and risks that may be associated with this new technology. In the last 15 years, GM crop producing countries have benefited from adoption of this new technology in the form of improved crop productivity, food security, and quality of life. The increased income to resource-poor farmers is a key benefit at the individual level especially as most countries using this technology are in the developing world, including three African countries (South Africa, Burkina Faso and Egypt). Despite clear benefits to countries and farmers who grow GMOs, many people are concerned about suspected potential risks associated with GMOs. This sparks debate as to whether GM technology should be adopted or not. Given the concerns regarding the safety of GMO products, thorough scientific investigation of safe application of GMOs is required. The objective of this paper is to respond to the issues of GM agriculture in Africa and some of the issues surrounding the adoption of GM crops between developed and developing countries. In this article, I analyse relevant papers relating to the adoption of GM technology particularly in developing countries including the few African countries that have adopted GM crops. The issues discussed span a wide range including: safety; potential benefits and risks; disputes between the United States of America (USA) and the European Union (EU) over adoption of GM crops with a focus on Africa continent. This article is concluded by summarising the issues raised and how GM technology can be adopted for agricultural development in Africa

    Revisiting the 'Cotton Problem': A Comparative Analysis of Cotton Reforms in Sub-Saharan Africa

    Full text link
    The cotton sector has been amongst the most regulated in Africa, and still is to a large extent in West and Central Africa (WCA), despite repeated refirm recommendations by international donors. On the other hand, orthodox refirms in East and Southern Africa (ESA) have not always yielded the expected results. This paper uses a stylised contracting model to investigate the link between market structure and equity and efficiency in sub-Saharan cotton sectors; explain the outcomes of refirms in ESA; and analyze the potential consequences of orthodox refirms in WCA. We argue that the level of the world price and of government intervention, the nature of pre-refirm institutional organisation, as well as the degree of parastatal inefficiency, all contribute to making refirms less attractive to firmers and governments in WCA today, as compared to ESA in the 1990s.We illustrate our arguments with empirical observations on the perfirmance of cotton sectors across sub-Saharan Africa
    corecore